2012-08-14

Beam Test of High Rate MRPC In Jlab

Xingming Fan Department of Engineering Physics Tsinghua University, Beijing, China

Hadron 2012, Beijing, China

Outline

- Introduction
 - TOF and MRPC
 - Experiment Overview
- Beam Test Setup
 - Test System
 - Process
 - Some Details on Setup
- Results & Conclusion
 - Test Results
 - Comparison
 - Conclusion

1.Introduction: MRPC TOF Wall

- The MRPC is developed for the TOF wall of SoLID Experiment
- Main Requirements for TOF:
 - $-\pi/k$ separation up to 2.5GeV/c
 - Time resolution < 80ps
 - Rate capability > 10kHz/cm²
- MRPC TOF wall we designed contain 150 MRPC modules in total, with 50 gas boxes and 3 counters in each box, covering the area of 10m².

Hadron 2012, Beijing, China

The MRPC module we tested is the prototype of inner module.

1.Introduction: MRPC module

- The prototype of high rate MRPC modules low resistivity glass electrodes can work under the flux of >25kHz/cm² in previous test in HZDR and GSI.
- Low resistivity glass is black in color, and the volume resistivity can reach ~ $10^{10}\Omega$.cm. (For float glass, the volume resistivity is ~ $10^{12}\Omega$.cm)

Hadron 2012, Beijing, China

1.Introduction: MRPC module

Gas Mixture(Pre-mixed)	Freon 90% iso-butane 5% SF6 5%
Working Voltage	±6800V
Electrical field	~108.8kV/cm

The design of	f MRPC readout		
Interval	3mm		
Strip width	25mm		
Readout mode	Differencial		

Dimensions

	Length/mm	Width/mm	Thickness/mm	
Gas gap	-	-	0.25×10	
Inner glass	320	130-171	0.7	
Outer glass	330	138-182	1.1	
Mylar	335	153-198	0.15	
Inner PCB	350	182-228	1.6	
Outer PCB	350	172-218	0.8	
Honeycomb	330	153-198	6	

1.Introduction: Cosmic Ray Test

Hadron 2012, Beijing, China

Efficiency > 95% @ 96kV/cm (6.0kV) Time resolution: 80ps ~ 90ps

1.Introduction: Experiment Overview

- The experiment took totally 3 months, contains several process. The MRPC is tested both with cosmic ray and beam.
- Brief Timetable :

Setting Up	Preparation(Feb 7 th -Mar 26 th)			Setting in Hall A(Mar 26 th -April 10 th)		
Feb 7 th - Apr 7 th	MRPC module and electronics; Placing High Voltage cable &gas supply; Work on DAQ and Decoding program; Pre-test with cosmic ray.			Building test system in Hall A; Upgrading of DAQ system; Finish cable connection; Pre-test with beam.		
Beam Test	May 12 th	May 13 th	May 14 th		May 15 th	May 16-17 th
May 12 th -May 17 th	Begin the test; Voltage Scan. Detector is 10m from Target with shield.	Replace LTD with CFD; continue test. Add T0 into calibration.	Place the MRPC S from Ta with sh Add sca	ne 5m Irget ield. aler.	Test continue. Changed another HV.	Take out the shield and continue testing

- The MRPC material is activated, which increases dark current and noise signal, as the test goes.
- We got the time resolution of 75-80ps

2.Beam Test Setup: In Hall A

Fast Scintillator (5 \times 15 cm²)

2.Beam Test Setup: In Hall A

- What is the beam like?
 - 3 GeV electrons hitting the target
 - Uniformed particle(electron) and photon irradiation
 - Large background and high flux

2012-08-14

2.Beam Test Setup: In Hall A

2.Beam Test Setup: Upgrade

- Improvements
 - The stop signal is changed into delayed T_0
 - LTD is changed into CFD

3.Results & Comparison: Calibration

3.Results & Comparison: Calibration

2012-08-14

In this test, T_0 is about 100ps, the time resolution is deteriorated.

3.Results & Comparison: HV Scan

3.Results & Comparison: Rate Scan

3.Results & Comparison: Flux vs. Time

Run193, 6800V (5m to target, not shielded)

- During a run, flux is not on a stable level, which from less than 3kHz/cm² to 16kHz/cm².
- We can observe the performance by selecting data from different flux.

Hadron 2012, Beijing, China

3.Results & Comparison : Charge Distribution 2012-08-14

- Significant reduction of charge distribution can be seen as the background rate increases.
- The reduction of electrical field is caused mainly by both background irradiation and electron beams.
- Rate capacity is higher than 15kHz/cm².

Hadron 2012, Beijing, China

Flux is small 10m, shielded

Flux~2.5kHz/cm² 5m, shielded

Flux~6-10kHz/cm² 5m, shielded

Flux~4kHz/cm² 5m, not shielded

Flux~15kHz/cm² 5m, not shielded

3.Results & Comparison : Beam Test@HZDR

Beam Test@HZDR June, 2012 DeltaT_1_1 DeltaT 1 1 10 Entries 7660 Mean 0.02483 RMS 2.637 χ²/ndf 277.3/58 pO 681.5±0.0 p1 -0.145 ± 0.045 p2 2.224 ± 0.010 10 -10 -5 5 10 15 -15 0 $\sigma_{RF} = 39.2 \, ps$ **S5** S10 **S2** $\sigma_{RPC} = 54.4 \, ps$ $\sigma_{RPC} = \sqrt{\sigma_{TOF}^2 - \sigma_{RF}^2} = 37.8 \, ps$ e⁻ beam

Hadron 2012, Beijing, China

S1

S6

RPC

S3

S9

3.Results & Comparison : Beam Test@HZDR

Beam Test@HZDR June, 2012

4.Conclusion

- Performance of MRPC is measured. The time resolution can reach 70-80ps and the efficiency is higher than 95%. The flux is up to 16kHz/cm².
- The MRPC module is placed within 10m to the Target for 2 months, without significant performance reduced, representing a high capability to irradiation.
- The Irradiation is uniformed. During Test, the current is large even when the rate is not very high, which means the photon background(photon) irradiation is very strong.

Thank you!

Xingming Fan Department of Engineering Physics Tsinghua University, Beijing, China

Hadron 2012, Beijing, China