Short Range Correlations: Present and Future

Vincent A. Sulkosky

Massachusetts Institute of Technology

- Short Range Correlations
- Results from A(e,e') & A(e,e'p)
- Triple-coincidence experiments
- Future 6 GeV Experiments
- Future 12 GeV Experiments

Hadron 2010 Beijing, China 30 July 2010

A(e,e'p)A-1 Kinematics

Four-momentum transfer: $Q^2 \equiv -q_{\mu}q^{\mu} = q^2 - \omega^2$

Missing momentum:

Missing energy:

Bjorken x:

Beijing, China

30 July 2010

Hadron 2010

 $x_{\rm R} = Q^2/2m\omega$ (just kinematics!)

 $p_{\rm m} = q - p = p_{\rm A-1}$

 $\varepsilon_{\rm m} = \omega - T_{\rm p} - T_{\rm A-1}$

reaction plane

Electron Scattering at Fixed Q²

Results from (e,e'p) Measurements

Independent-Particle Shell-Model

is based upon the assumption that each nucleon moves independently in an average potential (mean field) induced by the surrounding nucleons

The (e,e'p) data for knockout of valence and deeply bound orbits in nuclei gives spectroscopic factors that are 60 – 70% of the mean field prediction.

Beijing, China 30 July 2010 Hadron 2010

Short-Range Correlations

Questions

- What fraction of the momentum distribution is due to 2N-SRC?
- What is the relative momentum between the nucleons in the pair?
- What is the ratio of pp to pn pairs?
- Are these nucleons different from free nucleons (e.g. size)?

Beijing, China 30 July 2010

Hadron 2010

Hall B (CLAS) D(e,e'p)n Q² x<1 Data

K. Sh. Egiyan et al., Phys. Rev. Lett. 98 (2007) 262502.

Black Paris Potential Red AV-18 Potential

From Lowest To Highest PWIA PWIA+FSI PWIA+FSI+MEC+NΔ

CLAS A(e,e') Data

K. Sh. Egiyan *et al.,* Phys. Rev. C **68** (2003) 014313.

Originally done with SLAC data by D.B. Day et al., Phys. Rev. Lett. 59 (1987) 427.

$$x = \frac{Q^2}{2M\omega} > 1.5$$
 and $Q^2 > 1.4 [GeV/c_1^2]$
then
 $r(A,^3He) = a_{2n}(A)/a_{2n}(^3He)$

The observed *scaling* means that the electrons probe the high-momentum nucleons in the 2N-SRC phase, and the scaling factors determine the pernucleon probability of the 2N-SRC phase in nuclei with A>3 relative to ³He.

Beijing, China

Estimate of ¹²C Two and Three Nucleon SRC

K. Sh. Egiyan et al., Phys. Rev. Lett. 96 (2006) 082501.

- K. Egiyan *et al.* related the known correlations in deuterium and previous r(³He,D) results to find:
- ¹²C 20% two nucleon SRC

a₂(³He)=1.7±0.3

a₂(⁴He)=3.3±0.5

a₂(¹²C)=5.0±0.5

a₂(²⁷AI)=5.3±0.6

a₂(⁵⁶Fe)=5.2±0.9

a₂(¹⁹⁷Au)=4.8±0.7

• ¹²C <1% three nucleon SRC

Jefferson Lab

a₂=ratio in

represents

probability

of 2N SRC

plateau

Hadron 2010

¹²C From the (e,e') and (e,e'p) Results

- 80 +/- 5% single particles moving in an average potential
 - 60 70% independent single particle in a shell model potential
 - 10 20% shell model long range correlations
- 20 +/- 5% two-nucleon short-range correlations
 - Hall C (e,e') ratios coming from Nadia Fomin
 - No Q^2 dependence of ratio magnitude for $Q^2 = 1-4 \text{ GeV}^2$ within a few percent
 - Plateaus start when minimum missing momentum > Fermi momentum
- Less than 1% multi-nucleon correlations

Jefferson Lab's Hall A

Customized (e,e'pN) Measurement

To study nucleon pairs at close proximity and their contributions to the large momentum tail of nucleons in nuclei.

A pair with "large" relative momentum between the nucleons and small center of mass momentum

- high Q² to minimize MEC
- x>1 to suppress isobar contributions
- anti-parallel kinematics to suppress FSI

BigBite and Neutron Detector

¹²C(e,e'p) & ¹²C(e,e'pp) Data

R. Shneor et al., Phys. Rev. Lett. 99 (2007) 072501.

- ¹²C(e,e'p)
- Quasi-Elastic Shaded In Blue
- Resonance Even at $x_B > 1$

Mir

Brookhaven EVA Collaboration Result

A. Tang et al., Phys. Rev. Lett. 90 (2003) 042301.

IIIii T

Beijing, China 30 July 2010 Hadron 2010

Jefferson Lab

Correlated Pair Factions from ¹²C

R. Subedi et al., Science 320 (2008) 1476.

From the (e,e'), (e,e'p), and (e,e'pN) Results

30 July 2010

- 80 +/- 5% single particles moving in an average potential
 - 60 70% independent single particle in a shell model potential
 - 10 20% shell model long range correlations
- 20 +/- 5% two-nucleon short-range correlations

Beijing, China

- 18% np pairs
- 1% pp pairs
- 1% nn pairs (from isospin symmetry)
- Less than 1% multi-nucleon correlations

Importance of Tensor Correlations

- R. Schiavilla et al., Phys. Rev. Lett. 98 (2007) 132501. [shown above]
- M. Sargsian et al., Phys. Rev. C (2005) 044615.
- M. Alvioli, C. Ciofi degli Atti, and H. Morita, Phys. Rev. Lett. 100 (2008) 162503.

14ii

Future 6 GeV Experiments

E07-006: ⁴He(e,e'pN)pn SRC

- ⁴He Target
 - Dense Nuclear Matter
 - MF & Exact Calculations
- P_m from 400 800 MeV
- 25 PAC Days
- Scheduled for March 2011

E08-014: A(e,e') x>2 High Stat. Data

3.6 GeV Beam; 12 PAC DayS

Scheduled for April 2011

Future 12 GeV Experiments

E12-06-105: A(e,e') x>1 in QE and DIS regimes

- Targets: D, ³He, ⁴He, Be, C, Cu and Au
- High Momentum Spectrometer (HMS): large Q² at large angles
- SHMS: intermediate Q² and angles Goals:
- Study A dependence in detail of strength of 2N and 3N SRCs
- Study size and importance of alpha-clusters in nuclei (4N SRCs).
- Extraction of structure functions and unseparated quark distributions at x > 1
- Extended measurements of duality and scaling in nuclei

E12-10-003: D(e,e'p)n at x>1, Q²=4.2 GeV/c

21 PAC Days, 11 GeV beam and Hall C with 6 settings of the spectrometers

- · Investigation of large relative momenta in the pn system
- · Probe reaction dynamics, final state interactions and deuteron wave function
- Useful for interpretation of experiments that probe SRC in heavier nuclei

³He(e,e'p)d deviated from conventional theory at around 0.8 GeV/c

Beijing, China 30 July 2010 Had

Hadron 2010

PR12-09-010: Isospin Study of SRC with ³He and ³H

³He/³H is simple/straightforward case:

Simple mean field estimates for 2N-SRC

Isospin independent:

$$\frac{\sigma_{{}^{3}He}/3}{\sigma_{{}^{3}H}/3} = \frac{(2\sigma_{p} + 1\sigma_{n})/3}{(1\sigma_{p} + 2\sigma_{n})/3} \xrightarrow{\sigma_{p} \approx 3\sigma_{n}}{1.40}$$

Beijing, China

n-p (T=0) dominance:

$$\frac{\sigma_{3_H}/3}{\sigma_{3_{He}}/3} = \frac{(2pn + 1mn)/3}{(2pn + 1pp)/3} = 1.0$$

- Requires a new ³H and ³He target system
- Target system design completed and reviewed in June
- Full report was expected this month (July 2010)

Hadron 2010

New Idea: Large Acceptance Device

Letter of Intent at Most Recent Jefferson Lab Program Advisory Committee Meeting

Look for EMC type of effect for nucleons which are a member of a 2N-SRC

Implications for Neutron Stars

D. Higinbotham, E. Piasetzky, M. Strikman, CERN Courier 49N1 (2009) 22.

Beijing, China 30 July 2010 Hadron 2010

2010

Summary and Outlook

- Shell Model (the mean behavior of nucleons in nucleus)
- Short-Range Nucleon-Nucleon Correlation Experiments
 - Goal to probe the repulsive part of the nucleon-nucleon potential
 - Long History of Reaction Mechanisms Dominating Cross Section
- With high luminosity, $x_B > 1$ and $Q^2 > 1$ [GeV/c]2 we seem to finally be cleanly probing short distance behavior.
- Many other new results compliment what has been shown.
- With JLab 12 GeV, with high Q² [GeV/c]² in x>1 kinematics, experiments will push the limits of modern NN potentials and understand if these correlations are Hadronic, Partonic or Both (i.e. Duality).
- New collaborators are welcome!

1417

³He(e,e'p)d and ³He(e,e'p)np

F. Benmokhtar et al., Phys. Rev. Lett. 95 (2004) 082305.

Inclusive scattering at large x

Define y as the x_B -value at which the minimum p_{miss} exceeds p_{Fermi}

SRC model predicts:

- Scaling for $x_B > y$ and $Q^2 > 1.5 \text{ GeV}^2$
- No scaling for $Q^2 < 1 \text{ GeV}^2$
- In scaling regime ratio Q²-independent and only weakly A-dependent

Glauber Approximation predicts:

- No scaling for $x_{B} < 2$ and $Q^{2} > 1 \text{ GeV}^{2}$
- Nuclear ratios should vary with A and $\ensuremath{Q^2}$

Ratio of ¹²C(e,e'pp) to ¹²C(e,e'p)

R. Shneor et al., Phys. Rev. Lett. 99 (2007) 072501.

- Top plot shows the raw measured ratio
- Bottom plot shows the extrapolated where the finite acceptance of BigBite and pair center of mass motion has been taken into account.
- Determined pair cm motion to be 136+/-20 MeV/c and blue band indication two-sigma around this value.
- Note Brookhaven found 143+/-17 MeV/c

Jefferson Lab

Hadron 2010