Measurement of $\gamma d \rightarrow \pi^- pp$ and $\gamma d \rightarrow \pi^+ \pi^- np$ reactions with tagged photons

Yuncheng HAN(韩运成) for the NKS/NKS2 Collaboration

School of Nuclear Science and Technology, Lanzhou University; Department of Physics, Tohoku University, Japan

Introduction of pion photoproduction

- >Experimental setups
- >Analysis and results
- ➢Summary

Introduction of pion photoproduction

For pion photoproduction: ISI, 1st perturbative approx. and all the physics processes \rightarrow FSI;

≻Best lab for study interaction among meson, N and N*;

Standard way of study EM resonance coupling;

Motivation: $\gamma d \rightarrow \pi^- pp$

Motivation: Study of $\gamma d \rightarrow \pi^+\pi^-$ np reaction

7/28-7/31

Schematic View of NKS2

Solid angle ~ π sr; D~0.42 T; θ (Lab): -165°~165°

Analysis

- Time selection
- Track selection
- Vertex position

- \rightarrow suppress accidental coincidence
- \rightarrow suppress noisy of Drift Chamber
- \rightarrow target region select

Channel selection of $\gamma d \rightarrow \pi^- pp$

Channel selection of $\gamma d \rightarrow np\pi^+\pi^-$

Data Analysis

Total cross section: $\sigma(E) = \frac{N_{Yield}(E)}{N_{\gamma}(E)N_{Target}\varepsilon_{Ana}(E)\varepsilon_{DAQ}\varepsilon_{Track}}$

Differential cross section:

$$\frac{d\sigma}{d\Omega}(E,\theta) = \frac{N_{Yield}(E,\theta)}{N_{\gamma}(E)N_{Target}\varepsilon_{Ana}(E,\theta)\varepsilon_{DAQ}\varepsilon_{Track}d\Omega}$$

Total cross section of $\gamma d \rightarrow \pi^- pp$

7/28-7/31

Differential cross section of $\gamma d \rightarrow \pi^- pp$

 $d\sigma/d\Omega(\gamma d \rightarrow \pi^- pp)$ dominate in the forward angle; $d\sigma_{QF}/d\Omega$ flat in the forward angle region on E_{γ} , and decrease steeply on E_{γ} otherwise; $d\sigma_{NOF}/d\Omega$ does not depend much on E_{γ}

Differential cross section of $\gamma d \rightarrow \pi^- pp$

Deuteron effects are significant in the forward angle region; Divergence of theo. exist esp. forward/backward angle region.

Total cross section of $\gamma d \rightarrow n_{sp} p \pi^+ \pi^-$

Differential cross section of $\gamma d \rightarrow n_{sp} \Delta^{++} \pi^{-}$

7/28-7/31

Total cross section of $\gamma d \rightarrow \Delta^{++} \Delta^{-}$

Total cross section of $\gamma d \rightarrow \Delta^{++} \Delta^{-}$

Differential cross section of $\gamma d \rightarrow \Delta^{++} \Delta^{-}$

Summary

- > $\gamma d \rightarrow \pi^- pp$ and $\gamma d \rightarrow \pi^+ \pi^- np$ were measured with 0.812<E_{γ}<1.1 GeV;
- Differential and total cross section were obtained;
- Non-/ quasi-free process were separated;
- For γd→π⁻pp, σ_{QF}~10 σ_{NQF}; dσ_{NQF}/dΩ does not depend much on E_γ; deuteron effects are significant in the forward angle region;
- → for γd→ $\pi^+\pi^-$ np, Δ^{++} has backward favor distribution;
- Need find a better branch ratio fitting method;
- Theo. study need improve to fit Exp. data;
- NKS2 upgrade for larger acceptance and better resolution, new Exp. with $0.6 < E_{\gamma} < 0.9$ GeV is approved.

Collaboration List

School of Nuclear Science and Technology, Lanzhou University, China,

Y.C. Han, T.S. Wang

Department of Physics, Tohoku University, Japan

N. Chiga, Y. Fujii, T.Fujibayashi, K. Futatsukawa, O. Hashimoto, K. Hosomi,

- A. Iguchi, H. Kanda, M. Kaneta, M. Kawai, D. Kawama, T. Kawasaki, S. Kiyokawa,
- T. Koike, Y. Ma, K. Maeda, N. Maruyama, M. Matsuzawa, A. Matsumura,
- M. Mimori, Y. Miyagi, K. Miwa, S.N. Nakamura, Y. Okayasu, T. Otani,
- K. Shirotori, H. Tamura, N. Terada, K. Tsukada, T. Yamamoto, K. Yokota

Laboratory of Nuclear Science, Tohoku University, Japan

K. Hirose, T. Ishikawa, H. Shimizu, K. Suzuki, T. Tamae, H. Yamazaki

Ichinoseki National College of Technology, Japan

O. Konno

Department of Electrical and Electric Engineering, Akita University , Japan A. Sasaki