Recent progress from China Lattice QCD

 PHY:cos Chuan Liu
Outline

H Current status of collaboration
\% Recent progress
\& $\mathrm{D}^{*} \mathrm{D}_{1}$ scattering and $\mathrm{Z}(4430)$ \& J/psi radiative decays \& Other works...
\& Summary

\square
\square

Basic status of the collaboration

\& People
\% Y. Chen (IHEP, CAS)

* C. Liu (Peking University)
\& Y.B. Liu (Nankai University)
\& J.P. Ma (ITP, CAS)
\& J.B. Zhang (Zhejiang University)
\& Postdocs+students
\& Funding
\& Funded by NSFC, etc.
if Computing facilities: Shanghai, Tianjin, Beijing...

$D * D_{1}$ scattering and $Z(4430)$

Signal for Z(4430)

S.K. Choi et al., PRL 100,142001 (2008)

\& Resonance structure Z(4430) \% Close to threshold $D^{*+} \bar{D}_{1}^{0}$ \& $Q=+1, J^{P}=0,1,2$
 \& $\mathrm{M}=4433 \mathrm{MeV}$ \& $\Gamma=45 \mathrm{MeV}$

FIG. 2 (color online). The $M\left(\pi^{+} \psi^{\prime}\right)$ distribution for events in the $M_{\mathrm{bc}}-\Delta E$ signal region and with the K^{*} veto applied. The shaded histogram show the scaled results from the ΔE sideband. The solid curves show the results of the fit described in the text.

Theoretical investigations

\% Phenomenology

\& Shallow bound state (S.L. Zhu et al, PRD77,034003)
\& Tetra-quark resonance above threshold (X.-H Liu etal, PRD77, 094005)
\& Threshold enhancement (J.L. Rosner, PRD76,114002)
\% Need to study scattering near threshold \& Scattering length a_{0} and effective range r_{0} 2 Lattice QCD study (quenched)

Utilizing Lüscher's formalism

\% Consider two hadrons in a finite box s interaction : shift of two-particle energy s interaction : scattering phase shifts \& Lüscher's formula:

$$
\delta\left(E_{1 \cdot 2}\right) \Leftrightarrow E_{102}(L)
$$

Basic formulae

\& A box of size L, periodic in all three spatial directions:

$$
\vec{k}=(2 \pi / L) \vec{n}, \vec{n} \in Z^{3}
$$

\& Two interacting hadrons

$$
E_{102}(\bar{k})=\sqrt{m_{1}^{2}+\bar{k}^{2}}+\sqrt{m_{2}^{2}+\bar{k}^{2}}, q^{2}=\bar{k}^{2} L^{2} /(2 \pi)^{2}
$$

$$
\tan \delta(q)=\frac{\pi^{3 / 2} q}{Z_{00}\left(1 ; q^{2}\right)}
$$

Taking advantage of asymmetric box

\& Use asymmetric volumes: $L \times\left(\eta_{2} L\right) \times\left(\eta_{3} L\right)$ \& Take: $\eta_{2}=1, \eta_{3}>1$ \& The symmetry for the box is D_{4}

$$
\tan \delta(q)=\frac{\pi^{3 / 2} q \eta_{2} \eta_{3}}{Z_{00}\left(1 ; q^{2} ; \eta_{2}, \eta_{3}\right)}
$$

Single hadron operators

\& Single particle operators
D^{*+}

$$
P_{i}(x)=\left[\bar{c} \gamma^{i} \gamma^{5} u\right](x),
$$

\& Angular momentum decomposition

$$
\mathbf{0}=A_{1}, \quad \mathbf{1}=E \oplus A_{2}, \quad \mathbf{2}=A_{1} \oplus B_{1} \oplus B_{2} \oplus E .
$$

Double hadron operators

TABLE I. The two-particle operators defined in Eq. (12) and their corresponding angular momentum quantum number J in the continuum.

J^{P}	Two-particle operators	
0^{-}	$O^{\left(A_{1}\right)(1)}(t)$	
$1-$ 2^{-}	$O^{\left(A_{2}\right)}(t), O_{1}^{(E)(1)}(t), O_{2}^{(E)(1)}(t)$	$O^{\left(A_{1}\right)(2)}(t), O^{(B 1)}(t), O^{\left(B_{2}\right)}(t), O_{1}^{(E)(2)}(t), O_{2}^{(E)(2)}(t)$
	$\begin{aligned} O^{\left(A_{1}\right)(1)}(t)= & \sum_{R \in G}\left[Q_{1}(t+1,-R \circ \mathbf{k}) P_{1}(t, R \circ \mathbf{k})\right. \\ & +Q_{2}(t+1,-R \circ \mathbf{k}) P_{2}(t, R \circ \mathbf{k}) \\ & \left.+Q_{3}(t+1,-R \circ \mathbf{k}) P_{3}(t, R \circ \mathbf{k})\right], \end{aligned}$	

Correlation matrix

\& Only the correlation matrix in A_{1} channel shows signal

$$
C_{m n}^{\left(A_{1}\right)(1)}(t)=\left\langle O_{m}^{\left(A_{1}\right)(1) \dagger}(t) O_{n}^{\left(A_{1}\right)(1)}(0)\right\rangle,
$$

\& We have computed 5 lowest non-zero momentum modes together with the zero momentum mode.

Simulation setup

\& Tadpole improved clover action on anisotropic lattices

TABLE II. Simulation parameters in this study. All lattices have the same aspect ratio $\xi=5$.

	$\beta=2.5$	$\beta=2.8$	$\beta=3.2$
$N_{\text {conf }}$	700	500	200
u_{s}^{4}	0.4236	0.4630	0.50679
ν_{c}	0.732	0.79	0.89
$\nu_{u d}$	0.9305	0.96	1.0
$a_{s}(f m)$	0.2037	0.1432	0.0946
Lattice	$8 \times 8 \times 12 \times 40$	$12 \times 12 \times 20 \times 64$	$16 \times 16 \times 24 \times 80$
$\kappa_{\max }^{c}$	0.0577	0.0598	0.0595
$\kappa_{\max }^{\text {ud }}$	0.0613	0.0611	0.0606

Checking

 left to right: $\beta=2.5,2.8,3.2$.

Extract two-hadron energy

\& Appropriate ratios are taken:

$$
R(t)=\frac{\lambda_{i}(t)}{C_{D^{*}}(t) C_{D_{1}}(t)}
$$

$\Rightarrow \delta E_{i}^{\text {eff }}=E_{102}-m_{D^{*}}-m_{D_{1}}$

Obtaining $a_{0} \& r_{0}$

* Scattering length a_{0} \&

 effective range $r_{0}$$$
\frac{k}{\tan \delta(k)}=\frac{1}{a_{0}}+\frac{1}{2} r_{0} k^{2}+\cdots,
$$

FIG. 7. The quantity $K / \tan \delta(K)$ versus G^{2} in the $A_{1}^{(1)}$ channel. From top to bottom: $\beta=2.5,2.8$, and 3.2 .
extrapolations
\& After all the extrapolations
$a_{0}=2.53 \pm 0.47 \mathrm{fm}, \quad r_{0}=0.70 \pm 0.10 \mathrm{fm}$.
\square
\square
\square
\square
\square

discussions

\& Possible bound state?
\% For shallow bound state,

$$
a_{0} \rightarrow-\infty
$$

\% But our scattering lengths are all positive \% On the verge of developing a bound state \% Using the square well potential model to estimate, the potential well is $\mathrm{V}_{0}=70(10) \mathrm{MeV}, \mathrm{R}=0.7 \mathrm{fm}$.
\% Our results is not in favor of a shallow bound state

Glueballs in J／psi radiative decays

I. Introduction

- QCD predicts the existence of glueballs
- Quenched LQCD predicts glueball spectrum in the range 1~3GeV
- candidates: $\mathrm{fo}(1370), \mathrm{fo}(1500)$, f0(1710) etc.
- J/psi radiative decay can be the best hunting ground.
- BESIII is producing $10^{10} \mathrm{~J} / \mathrm{psi}$ events

$J^{P C}$	mMa	Ma (MeV)
${ }^{\text {or }}$	4.16 (11)(4)	1710(50) (80)
2^{++}	5.883(5)(6)	2390 (30) (120)
0^{-}	6.2566](6)	2560(35)(120)
	$7.274)^{(7)}$	2980(3)(140)
2^{-}	$7.4297(7)$	3040(40)(150)
${ }^{\text {3- }}$	8.79(3)(9)	3600(40)(170)
$3^{\text {+ }}$	8.9446(9)	3670.(50)(180)
1^{-}	9.344(4)(9)	3880)(40)(100)
2^{-}	9.774(4)(10)	4010(45)(200)
${ }^{-}$	10.254])(10)	4200(45)(200)
2^{+-}	10.327 (7) (10)	4230(50)(200)
o^{+-}	$11.66{ }^{(7)}$ (12)	4880(60) (230)

[^0]
Hadronic matrix element

The computation of $\mathrm{J} / \mathrm{psi}$ radiative decay into glueballs breaks up into perturbative part (QED part) and non-perturbative part
\& The non-perturbative part requires the computation of matrix element

Glueball state
EM current
J / Ψ state

Three-point function

$$
\begin{aligned}
\Gamma^{(3)}\left(\vec{p}_{f}, \vec{q} ; t_{f}, t\right) & =-\sum_{\vec{x}, \vec{y}} e^{-i \vec{p} f \cdot \vec{x}} e^{+i \vec{q} \cdot \vec{y}}\left\langle O_{S}\left(\vec{x}, t_{f}\right) j^{\mu}(\vec{y}, t) O_{V}^{\dagger}(0,0)\right\rangle \\
\left(t_{f} \geq t \geq 0\right) &
\end{aligned}
$$

Scalar glueball operator

Electromagnetic current operator

Charmonium operator

After the intermediate state insertion, the three-point function can be written as

$$
\begin{aligned}
& \Gamma^{(3), \mu j}\left(\vec{p}_{f}, \vec{q} ; t_{f}, t\right)=\sum_{f, i, r} \frac{e^{-E_{f}\left(t_{f}-t\right)} e^{-E_{i} t}}{2 E_{f}\left(\vec{p}_{f}\right) 2 E_{i}\left(\vec{p}_{i}\right)} \\
& \times\langle 0| O_{S}(0)\left|f\left(\vec{p}_{f}\right)\right\rangle\left\langle f\left(\vec{p}_{f}\right)\right| j^{\mu}(0)\left|i\left(\vec{p}_{i}, r\right)\right\rangle\left\langle i\left(\vec{p}_{i}, r\right)\right| O_{V}^{(j) \dagger}|0\rangle \\
&\langle 0| O_{V}^{\mu}|n(\vec{p}, r)\rangle \equiv Z_{n} \epsilon^{\mu}(\vec{p}, r)
\end{aligned}
$$

$$
\sum_{r} \epsilon^{\mu}(\vec{p}, r) \epsilon^{\nu *}(\vec{p}, r)=-g^{\mu \nu}+\frac{p^{\mu} p^{\nu}}{m_{n}^{2}}
$$

Two-point function of vector meson

$$
\begin{aligned}
C_{2}^{i j}(\vec{p}, t) & =\sum_{\vec{x}} e^{-i \vec{p} \vec{x}}\langle 0| O_{V}^{(i)}(\vec{x}, t) O_{V}^{(j), \dagger}(\overrightarrow{(0)}, 0)|0\rangle \\
& =\sum_{n, r} \frac{1}{2 E_{n}(\vec{p})}\langle 0| O_{V}^{(i)}(0)|n(\vec{p}, r)\rangle\langle n(\vec{p}, r)| O_{V}^{(j), \dagger}(0)|0\rangle e^{-E_{n} t} \\
& =\sum_{n} \frac{Z_{n} Z_{n}^{*}}{2 E_{n}(\vec{p})}\left(\delta_{i j}+\frac{p^{i} p^{j}}{m_{n}^{2}}\right) e^{-E_{n} t} .
\end{aligned}
$$

步

II．Numerical details
1．Lattice and parameters
Anisotropic lattice：$L^{3} \times T=8^{3} \times 96 \quad \xi=a_{s} / a_{t}=5$
Strong coupling：$\quad \beta=2.4 \quad a_{s}=0.222(2) \mathrm{fm}$
2．Actions

$$
\begin{aligned}
S_{I A}= & \beta\left\{\frac{5}{3} \frac{\Omega_{s p}}{\xi u_{s}^{4}}+\frac{4}{3 \mid u_{t}^{t} u_{s}^{2}}-\frac{1}{12} \frac{\Omega_{s r}}{\xi u_{s}^{6}}-\frac{1}{12} \frac{\xi \Omega_{s t r}}{u_{s}^{4} u_{t}^{2}}\right\} \\
\mathcal{A}_{x y}= & \delta_{x y}\left[1 /\left(2 \kappa_{\text {max }}\right)+\rho_{t} \sum_{i=1}^{3} \sigma_{0 i} \mathcal{F}_{0 i}+\rho_{s}\left(\sigma_{12} \mathcal{F}_{12}+\sigma_{23} \mathcal{F}_{23}+\sigma_{31} \mathcal{F}_{31}\right)\right] \\
& -\sum_{\mu} \eta_{\mu}\left[\left(1-\gamma_{\mu}\right) U_{\mu}(x) \delta_{x+\mu, y}+\left(1+\gamma_{\mu}\right) U_{\mu}^{+}(x-\mu) \delta_{x-\mu, y}\right] \\
\eta_{i}= & \nu\left(2 u_{s}\right), \eta_{0}=\xi / 2, \sigma=1 /(2 \kappa)-1 /\left(2 \kappa_{\text {max }}\right), \\
& \rho_{t}=c_{S W}(1+\xi) /\left(4 u_{s}^{2}\right), \rho_{s}=c_{S W} /\left(2 u_{s}^{4}\right) .
\end{aligned}
$$

3. Configurations and quark propagators

In order to get fair signals of the three point functions, a large enough statistics is required.

- 5000 gauge configurations, separated by 100 HB sweeps
- Charm quark mass is set by the physical mass of $\mathrm{J} / \mathrm{psi}$
- On each configuration, 96 charm quark propagators are calculated with point sources on all the 96 time slices. The periodic boundary conditions are used both for the spatial and temporal directions.
$\Gamma^{(3) \mu i}\left(\vec{p}_{f}, \vec{q} ; t_{f}, t\right)=\frac{1}{T} \sum_{\tau=0}^{T-1} \sum_{\vec{y}} e^{+i \vec{q} \cdot \hat{y}}\left\langle O_{G}\left(\vec{p}_{f}, t_{f}+\tau\right) j^{\mu}(\vec{y}, t+\tau) O_{J / \psi}^{i,+}(\tau)\right\rangle$

4. The glueball operators

Building prototypes (various Wilson loops)

Smearing: Single link scheme (APE) and double link scheme (fuzzying)

The essence of the VM is to find a set of combinational coefficients

$$
\left\{v_{\alpha}, \alpha=1,2, \ldots 24\right\}
$$

such that the operator

$$
\Phi=\sum_{\alpha} v_{\alpha} \phi_{\alpha}
$$

couples mostly to a specific

$$
\tilde{C}\left(t_{D}\right) \mathbf{v}^{(R)}=e^{-t_{D} \tilde{m}\left(t_{D}\right)} \tilde{C}(0) \mathbf{v}^{(R)}
$$

$$
\tilde{C}_{\alpha \beta}(t)=\sum_{\tau}\langle 0| \phi_{\alpha}(t+\tau) \phi_{\beta}(\tau)|0\rangle
$$

$$
\tilde{m}\left(t_{D}\right)=-\frac{1}{t_{D}} \ln \frac{\sum_{\alpha \beta} v_{\alpha} v_{\beta} \tilde{C}_{\alpha \beta}\left(t_{D}\right)}{\sum_{\alpha \beta} v_{\alpha} v_{\beta} \tilde{C}_{\alpha \beta}(0)}
$$ state.

The energies of 27 momentum modes of scalar glueballs are calculated. Plotted are the plateaus using the optimized operators

$$
\begin{gathered}
a_{t}^{2} E_{t h}^{2}(\vec{p})=a_{t}^{2} m^{2}+\frac{4}{\xi^{2}} \sum_{i=1}^{3} \sin ^{2} \frac{p_{i}}{2}, \\
\vec{p}=\frac{2 \pi}{L}\left(n_{1}, n_{2}, n_{3}\right)
\end{gathered}
$$

The horizontal line is the theoretical prediction with $\xi=5$
It is seen that the deviations are less than 5\%

5．Three point functions

$$
\begin{array}{rlr}
\Gamma^{(3), \mu j}\left(\vec{p}_{f}, \vec{q} ; t_{f}, t\right) & =\sum_{f, i, r} \frac{e^{-E_{f}\left(t_{f}-t\right)} e^{-E_{i} t}}{2 E_{f}\left(\vec{p}_{f}\right) 2 E_{i}\left(\vec{p}_{i}\right)} & \vec{p}_{i}=\vec{p}_{f}-\vec{q} . \\
& \times\langle 0| O_{S}(0)\left|f\left(\vec{p}_{f}\right)\right\rangle\left\langle f\left(\vec{p}_{f}\right)\right| j^{\mu}(0)\left|i\left(\vec{p}_{i}, r\right)\right\rangle\left\langle i\left(\vec{p}_{i}, r\right)\right| O_{V}^{(j) \dagger}|0\rangle
\end{array}
$$

Temporarily，we only analyze the following cases：

$$
\begin{cases}\vec{p}_{i}=(0,0,0) & \vec{p}=\vec{q}=(000),(100), \cdots,(222) \\ \mu=i=1,2,3 & Q^{2}=-\left(p_{f}-p_{i}\right)^{2}=\vec{p}_{f}^{2}-\left(M_{i}-E_{f}\right)^{2}\end{cases}
$$

The plots for the ratios $\Gamma^{(3)}(t, 40,0) / C_{2}(40)$

Exponential fit by taking the glueball energies as known parameters

6．The form factor and the decay width

Polynomial fit：

$$
\begin{aligned}
& E_{1}\left(Q^{2}\right)=E_{1}(0)+a Q^{2}+b Q^{4} \\
& E_{1}(0)=0.0145(13) G e V
\end{aligned}
$$

Preliminary!

The branch ratio is

$$
\begin{aligned}
& \Gamma\left(J / \psi \rightarrow \gamma G_{0^{+}}\right)=\frac{4}{27} \alpha \frac{|p|}{M_{J / \psi}^{2}}\left|E_{1}(0)\right|^{2}=0.030(5) \mathrm{keV} \\
& \frac{\Gamma}{\Gamma_{t o t}}=0.030(5) / 93.2=3.2(5) \times 10^{-4}
\end{aligned}
$$

禹
-1
［惑］
國区援
感

Summary

* Quenched lattice QCD study on $J^{P}=0^{-}$channel scattering yields scattering length a_{0} and effective range r_{0}. Two meson interaction is attractive, but unlikely to form a bound state.
\% Unquenched study desired
\% Preliminary quenched study on $\mathrm{J} / \mathrm{psi}$ radiative decay to scalar glueball is calculated with the result: $\Gamma=0.030(5) \mathrm{keV}$.
* More to be checked (curent renormalization, extrapolations, other channels etc.)

[^0]: Y. Chen et al,

 Phys. Rev. D 73, 014516 (2006)

