Recent progress from China Lattice QCD

INSTITUTE OF THEORETICAL PHYSICS Chuan Liu

Outline

Current status of collaboration
Recent progress
D*D1 scattering and Z(4430)
J/psi radiative decays
Other works...
Summary

Basic status of the collaboration

People **¥** Y. Chen (IHEP, CAS) **#** C. Liu (Peking University) **¥** Y.B. Liu (Nankai University) # J.P. Ma (ITP, CAS) **#** J.B. Zhang (Zhejiang University) **#** Postdocs+students **#** Funding **#** Funded by NSFC, etc. **#** Computing facilities: Shanghai, Tianjin, Beijing...

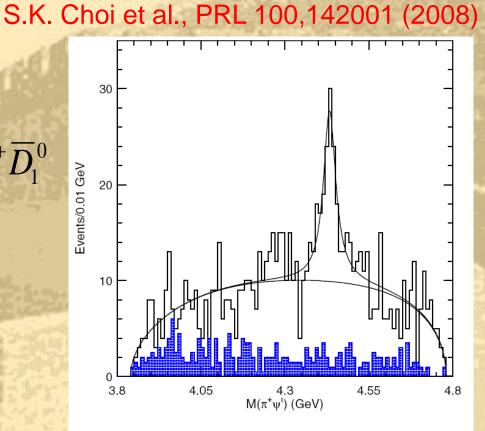
D*D₁ scattering and Z(4430)

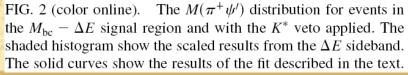
P

FIF |

Signal for Z(4430)

Resonance structure Z(4430) # Close to threshold $D^{*+}\overline{D}_{1}^{0}$ **#** $Q=+1, J^{P}=0^{-}, 1^{-}, 2^{-}$ **#** M=4433 MeV **#** $\Gamma=45$ MeV





Theoretical investigations

Phenomenology

* Shallow bound state (S.L. Zhu et al, PRD77,034003)

- Fetra-quark resonance above threshold (X.-H Liu et al, PRD77, 094005)
- * Threshold enhancement (J.L. Rosner, PRD76,114002)

***** Need to study scattering near threshold

****** Scattering length a_0 and effective range r_0 ****** Lattice QCD study (quenched)

Utilizing Lüscher's formalism

Consider two hadrons in a finite box
interaction : shift of two-particle energy
interaction : scattering phase shifts
Lüscher's formula:

 $\delta(E_{1\bullet 2}) \Leftrightarrow E_{1\bullet 2}(L)$

Basic formulae

A box of size *L*, periodic in all three spatial directions: $\vec{k} = (2\pi/L)\vec{n}$, $\vec{n} \in Z^3$ **#** Two interacting hadrons

$$E_{1\bullet2}(\bar{k}) = \sqrt{m_1^2 + \bar{k}^2} + \sqrt{m_2^2 + \bar{k}^2} , \ q^2 = \bar{k}^2 L^2 / (2\pi)^2$$

$$\tan \delta(q) = \frac{\pi^{3/2} q}{Z_{00}(1;q^2)}$$

Taking advantage of asymmetric box

Use asymmetric volumes: $L \times (\eta_2 L) \times (\eta_3 L)$ **#** Take: $\eta_2 = 1$, $\eta_3 > 1$ **#** The symmetry for the box is D_4

$$\tan \delta(q) = \frac{\pi^{3/2} q \eta_2 \eta_3}{Z_{00}(1; q^2; \eta_2, \eta_3)}$$

Single hadron operators

 $\overline{D_1}^{\theta}$

Single particle operators

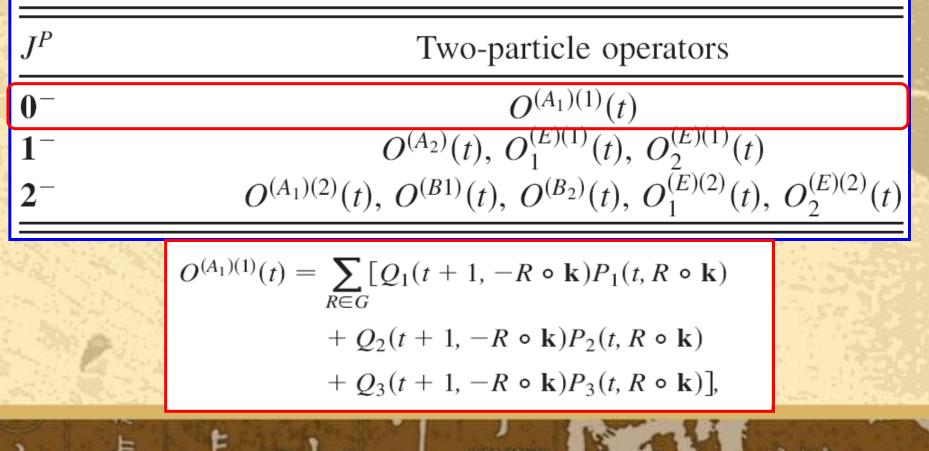
$$\boldsymbol{D^{*+}} \qquad \boldsymbol{Q}_i(x) = [\bar{d}\gamma^i c](x), \qquad \boldsymbol{P}_i(x) = [\bar{c}\gamma^i \gamma^5 u](x),$$

Angular momentum decomposition

$$\mathbf{0} = A_1, \qquad \mathbf{1} = E \oplus A_2, \qquad \mathbf{2} = A_1 \oplus B_1 \oplus B_2 \oplus E.$$

Double hadron operators

TABLE I. The two-particle operators defined in Eq. (12) and their corresponding angular momentum quantum number J in the continuum.



Correlation matrix

Only the correlation matrix in A_1 channel shows signal

$$C_{mn}^{(A_1)(1)}(t) = \langle O_m^{(A_1)(1)\dagger}(t) O_n^{(A_1)(1)}(0) \rangle,$$

We have computed 5 lowest non-zero momentum modes together with the zero momentum mode.

Simulation setup

Tadpole improved clover action on anisotropic lattices

TABLE II.	Simulation parameters in this study. All lattices have the same aspect ratio $\xi = 5$.		
	$\beta = 2.5$	$\beta = 2.8$	$\beta = 3.2$
N _{conf}	700	500	200
$\frac{N_{\rm conf}}{u_s^4}$	0.4236	0.4630	0.50679
	0.732	0.79	0.89
$ \nu_c $ $ \nu_{ud} $	0.9305	0.96	1.0
$a_s(fm)$	0.2037	0.1432	0.0946
Lattice	$8 \times 8 \times 12 \times 40$	$12 \times 12 \times 20 \times 64$	$16 \times 16 \times 24 \times 80$
κ_{\max}^c	0.0577	0.0598	0.0595
$\frac{\kappa_{\max}^{c}}{\kappa_{\max}^{ud}}$	0.0613	0.0611	0.0606

Checking single particle states

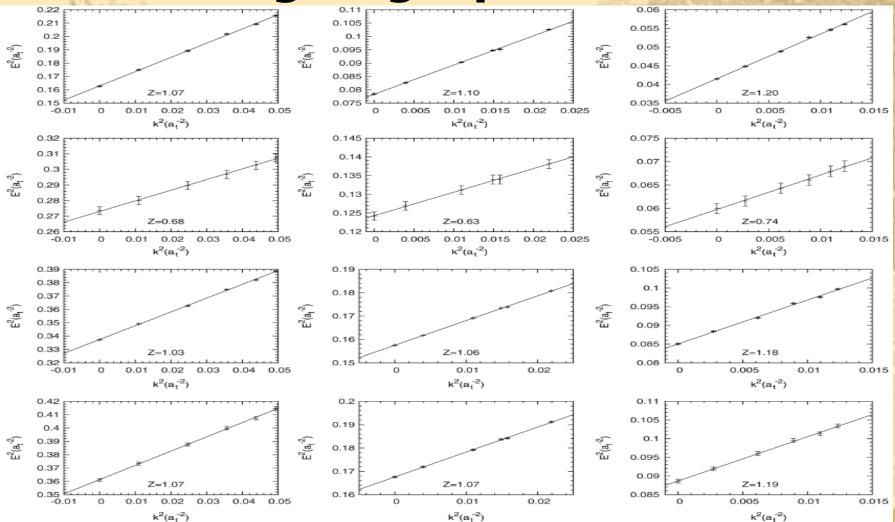
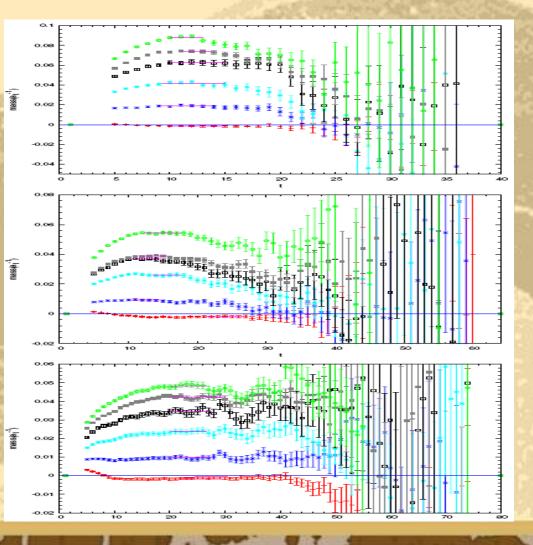


FIG. 5. Dispersion relations for various mesons obtained from single meson energies. From top to bottom: D^* , \bar{D}_1 , η_c , J/ψ ; from left to right: $\beta = 2.5, 2.8, 3.2$.

Extract two-hadron energy

Appropriate ratios are taken:

$$\begin{split} R(t) &= \frac{\lambda_i(t)}{C_{D^*}(t)C_{D_1}(t)} \\ \Rightarrow \delta E_i^{eff} &= E_{1 \bullet 2} - m_{D^*} - m_{D_1} \end{split}$$



Obtaining *a*₀ & *r*₀

Scattering length a_0 & effective range r_0

$$\frac{k}{\tan\delta(k)} = \frac{1}{a_0} + \frac{1}{2}r_0k^2 + \cdots,$$

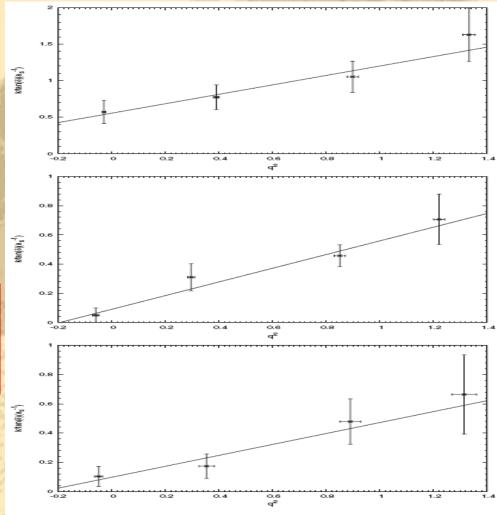


FIG. 7. The quantity $k/\tan\delta(k)$ versus q^2 in the $A_1^{(1)}$ channel. From top to bottom: $\beta = 2.5, 2.8, \text{ and } 3.2.$

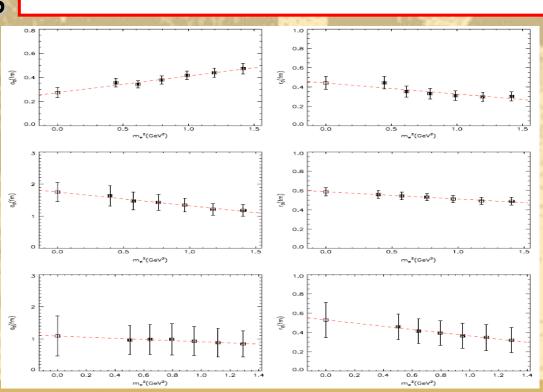
extrapolations

 $a_0 = 2.53 \pm 0.47$ fm,

***** After all the extrapolations

5

1



 $r_0 = 0.70 \pm 0.10$ fm.

discussions

Possible bound state? **#** For shallow bound state, **#** But our scattering lengths are all positive **#** On the verge of developing a bound state **#** Using the square well potential model to estimate, the potential well is $V_0=70(10)$ MeV, R=0.7fm. **#** Our results is **not** in favor of a shallow bound state

Glueballs in J/psi radiative decays

I. Introduction

- QCD predicts the existence of glueballs
- Quenched LQCD predicts
 glueball spectrum in the range
 1~3GeV
- candidates: f0(1370), f0(1500), f0(1710) etc.
- •J/psi radiative decay can be the best hunting ground.
- BESIII is producing 10¹⁰ J/psi events

<u> </u>		
J^{PC}	$r_0 M_G$	$M_G({ m MeV})$
0++	4.16(11)(4)	1710(50)(80)
2++	5.83(5)(6)	2390(30)(120)
0-+	6.25(6)(6)	2560(35)(120)
1+-	7.27(4)(7)	2980(30)(140)
2 ⁻⁺	7.42(7)(7)	3040(40)(150)
3+-	8.79(3)(9)	3600(40)(170)
3++	8.94(6)(9)	3670(50)(180)
1	9.34(4)(9)	3830(40)(190)
2	9.77(4)(10)	4010(45)(200)
3	10.25(4))(10)	4200(45)(200)
2+-	10.32(7)(10)	4230(50)(200)
0+-	11.66(7)(12)	4780(60)(230)

Y. Chen et al, Phys. Rev. D 73, 014516 (2006)

Hadronic matrix element

- * The computation of J/psi radiative decay into glueballs breaks up into perturbative part (QED part) and non-perturbative part
- * The non-perturbative part requires the computation of matrix element

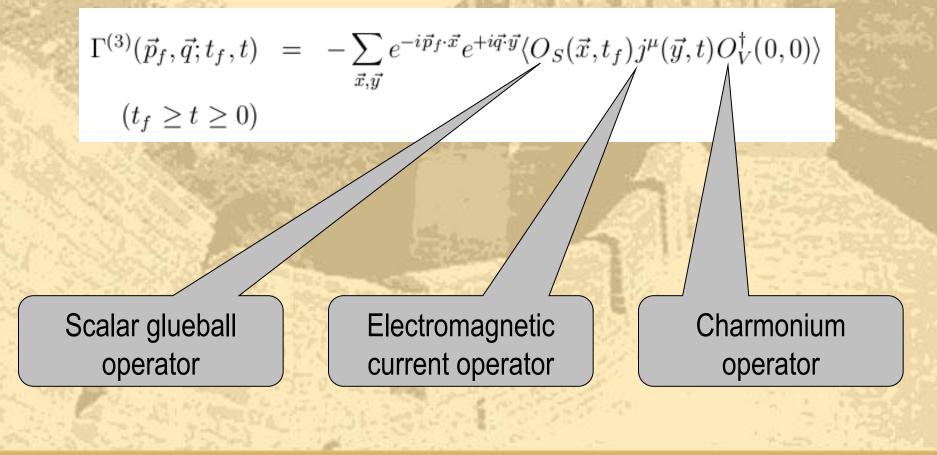
$$\langle G | j^{(e.m.)}_{\mu}(x) | J / \Psi \rangle$$

Glueball state

EM current

 J/Ψ state

Three-point function



After the intermediate state insertion, the three-point function can be written as

$$\Gamma^{(3),\mu j}(\vec{p}_f, \vec{q}; t_f, t) = \sum_{f,i,r} \frac{e^{-E_f(t_f - t)} e^{-E_i t}}{2E_f(\vec{p}_f) 2E_i(\vec{p}_i)}$$

 $\times \langle 0|O_S(0)|f(\vec{p}_f)\rangle \langle f(\vec{p}_f)|j^{\mu}(0)|i(\vec{p}_i,r)\rangle \langle i(\vec{p}_i,r)|O_V^{(j)\dagger}|0\rangle$

 $\langle 0|O_V^{\mu}|n(\vec{p},r)\rangle \equiv Z_n \epsilon^{\mu}(\vec{p},r)$

$$\sum_{r} \epsilon^{\mu}(\vec{p}, r) \epsilon^{\nu *}(\vec{p}, r) = -g^{\mu\nu} + \frac{p^{\mu}p^{\nu}}{m_{n}^{2}}$$

$$\vec{p}_i = \vec{p}_f - \vec{q}_f$$

Two-point function of vector meson

$$\begin{aligned} C_2^{ij}(\vec{p},t) &= \sum_{\vec{x}} e^{-i\vec{p}\cdot\vec{x}} \langle 0|O_V^{(i)}(\vec{x},t)O_V^{(j),\dagger}(\vec{(0)},0)|0\rangle \\ &= \sum_{n,r} \frac{1}{2E_n(\vec{p})} \langle 0|O_V^{(i)}(0)|n(\vec{p},r)\rangle \langle n(\vec{p},r)|O_V^{(j),\dagger}(0)|0\rangle e^{-E_nt} \\ &= \sum_n \frac{Z_n Z_n^*}{2E_n(\vec{p})} \left(\delta_{ij} + \frac{p^i p^j}{m_n^2}\right) e^{-E_nt}. \end{aligned}$$

II. Numerical details 1. Lattice and parameters Anisotropic lattice: $L^3 \times T = 8^3 \times 96$ $\xi = a_s / a_t = 5$ Strong coupling: $\beta = 2.4$ $a_s = 0.222(2) fm$

2. Actions

$$S_{IA} = \beta \{ \frac{5}{3} \frac{\Omega_{sp}}{\xi u_s^4} + \frac{4}{3} \frac{\xi \Omega_{tp}}{u_t^2 u_s^2} - \frac{1}{12} \frac{\Omega_{sr}}{\xi u_s^6} - \frac{1}{12} \frac{\xi \Omega_{str}}{u_s^4 u_t^2} \}$$

$$\mathcal{A}_{xy} = \delta_{xy} [1/(2\kappa_{max}) + \rho_t \sum_{i=1}^{3} \sigma_{0i} \mathcal{F}_{0i} + \rho_s (\sigma_{12} \mathcal{F}_{12} + \sigma_{23} \mathcal{F}_{23} + \sigma_{31} \mathcal{F}_{31})] - \sum_{\mu} \eta_{\mu} [(1 - \gamma_{\mu}) U_{\mu}(x) \delta_{x+\mu,y} + (1 + \gamma_{\mu}) U_{\mu}^{+}(x - \mu) \delta_{x-\mu,y}]$$

$$\eta_i = \nu/(2u_s), \eta_0 = \xi/2, \sigma = 1/(2\kappa) - 1/(2\kappa_{max}),$$
$$\rho_t = c_{SW}(1+\xi)/(4u_s^2), \rho_s = c_{SW}/(2u_s^4).$$

3. Configurations and quark propagators

In order to get fair signals of the three point functions, a large enough statistics is required.

- 5000 gauge configurations, separated by 100 HB sweeps
- Charm quark mass is set by the physical mass of J/psi
- On each configuration, 96 charm quark propagators are calculated with point sources on all the 96 time slices.
 The periodic boundary conditions are used both for the spatial and temporal directions.

$$\Gamma^{(3)\mu i}(\vec{p}_{f},\vec{q};t_{f},t) = \frac{1}{T} \sum_{\tau=0}^{T-1} \sum_{\vec{y}} e^{+i\vec{q}\cdot\vec{y}} \left\langle O_{G}(\vec{p}_{f},t_{f}+\tau) j^{\mu}(\vec{y},t+\tau) O_{J/\psi}^{i,+}(\tau) \right\rangle$$

4. The glueball operators

Building prototypes (various Wilson loops)

Smearing: Single link scheme (APE) and double link scheme (fuzzying)

The essence of the VM is to find a set of combinational coefficients $\{v_{\alpha}, \alpha = 1, 2, ..., 24\}$ such that the operator

$$\Phi = \sum v_{\alpha} \phi_{\alpha}$$

 α

couples mostly to a specific state.

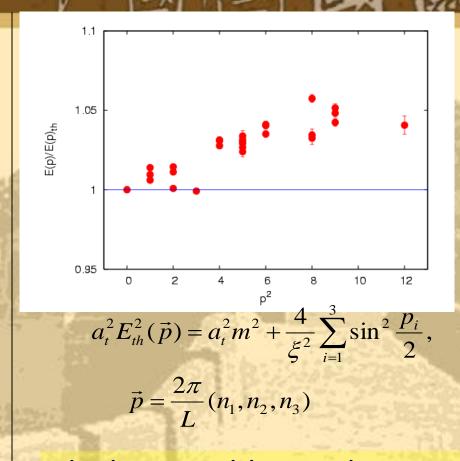
$$\tilde{C}(t_D)\mathbf{v}^{(R)} = e^{-t_D\tilde{m}(t_D)}\tilde{C}(0)\mathbf{v}^{(R)}$$

$$\tilde{C}_{\alpha\beta}(t) = \sum_{\tau} \langle 0 | \phi_{\alpha}(t+\tau) \phi_{\beta}(\tau) | 0 \rangle$$

$$\tilde{m}(t_D) = -\frac{1}{t_D} \ln \frac{\sum\limits_{\alpha\beta} v_\alpha v_\beta \tilde{C}_{\alpha\beta}(t_D)}{\sum\limits_{\alpha\beta} v_\alpha v_\beta \tilde{C}_{\alpha\beta}(0)}$$

0.8 p=(000 (100 0.7 0.6 E(p)a_t 0.5 0.4 0.3 σ 2 t/a,

The energies of 27 momentum modes of scalar glueballs are calculated. Plotted are the plateaus using the optimized operators

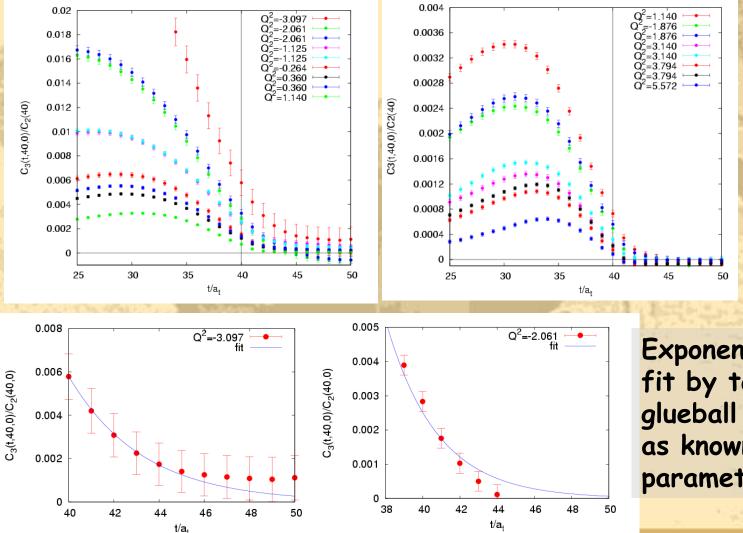


The horizontal line is the theoretical prediction with $\xi = 5$. It is seen that the deviations are less than 5%

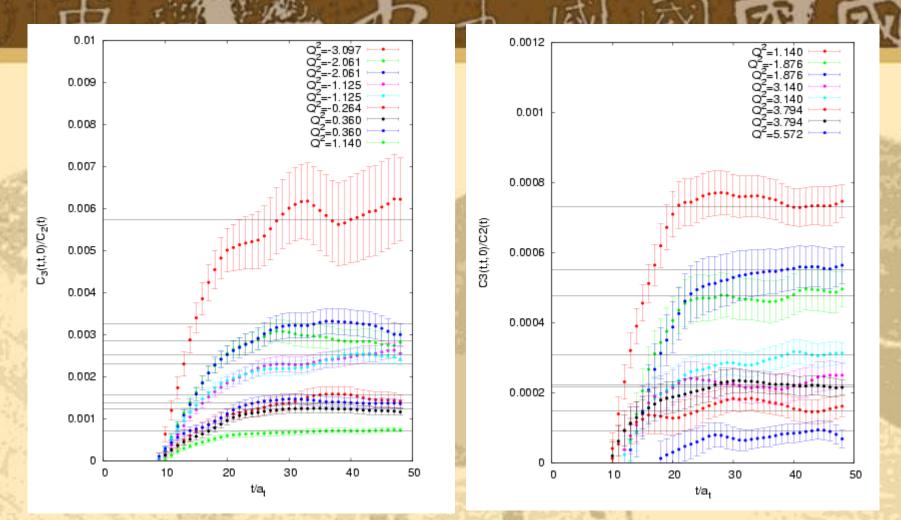
5. Three point functions

G J/ψ J/ψ G $\Gamma^{(3),\mu j}(\vec{p}_f, \vec{q}; t_f, t) = \sum_{f,i,r} \frac{e^{-E_f(t_f - t)} e^{-E_i t}}{2E_f(\vec{p}_f) 2E_i(\vec{p}_i)}$ $\vec{p}_i = \vec{p}_f - \vec{q}.$ $\times \langle 0|O_S(0)|f(\vec{p}_f)\rangle \langle f(\vec{p}_f)|j^{\mu}(0)|i(\vec{p}_i,r)\rangle \langle i(\vec{p}_i,r)|O_V^{(j)\dagger}|0\rangle$ Temporarily, we only analyze the following cases: $\vec{p}_i = (0,0,0)$ $\mu = i = 1,2,3$ $\vec{p} = \vec{q} = (000), (100), \dots, (222)$ $Q^2 = -(p_f - p_i)^2 = \vec{p}_f^2 - (M_i - E_f)^2$

The plots for the ratios $\Gamma^{(3)}(t,40,0)/C_2(40)$

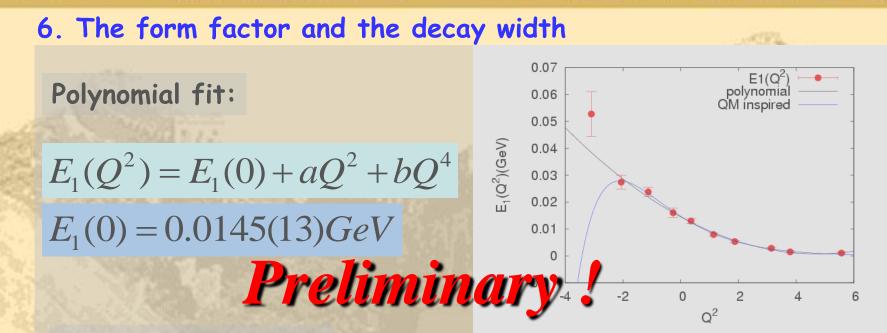


Exponential fit by taking the glueball energies as known parameters



 $\frac{\Gamma^{(3),ii}(\vec{p}_f;t,t)}{C_2^{ii}(\vec{p}_i=0;t)} \equiv \alpha^{ii}(M_f,\vec{p}_f,M_i)E_1(Q^2,t) + \beta^{ii}(M_f,\vec{p}_f,M_i)C_1'(Q^2,t)$

These are known functions



The branch ratio is

 $\Gamma(J/\psi \to \gamma G_{0^+}) = \frac{4}{27} \alpha \frac{|p|}{M_{J/\psi}^2} |E_1(0)|^2 = 0.030(5) keV$ $\frac{\Gamma}{\Gamma_{tot}} = 0.030(5)/93.2 = 3.2(5) \times 10^{-4}$

Summary

10-0

4

ቴ

1成1

193

國國國

Summary

- Quenched lattice QCD study on J^P = 0⁻ channel scattering yields scattering length a₀ and effective range r₀. Two meson interaction is attractive, but unlikely to form a bound state.
 Unquenched study desired
- Preliminary quenched study on J/psi radiative decay to scalar glueball is calculated with the result: Γ=0.030(5)keV.
 More to be checked (curent renormalization, extrapolations, other channels etc.)