The GlueX Experiment Search for Gluonic Hybrid Mesons via Photoproduction at Jefferson Lab

Paul Eugenio Florida State University Tallahassee, FL USA

Second Workshop on Hadron Physics in China

and Oppor Cunities with 12 GeV JLab

Overview

- Motivation & Identification QCD Exotics
- Candidates for Exotic Mesons
 The GlueX Experiment
 Hybrid Meson Search at Jefferson Lab
 Additional Physics with GlueX

Gluonic Excitations

$$S = 0, 1$$

 $L = 0, 1, 2, 3, \cdots$

 $\vec{J} = \vec{L} + \vec{S}$ $P = (-1)^{L+1}$ $C = (-1)^{L+S}$

Meson quantum numbers characterized by given J^{RC}

Allowed States: $J^{PC} = 0^{-+}, 0^{++}, 1^{--}, 1^{+-}, 1^{++}, 2^{--}, 2^{-+}, 2^{++}, \cdots$

Forbidden States(Exotics): $J^{PC} = 0^{+-}, 0^{--}, 1^{-+}, 2^{+-}, 3^{-+}, 4^{+-}, \cdots$

Mass Predictions of Exotic Mesons

- The lightest hybrid meson nonet predicted by lattice QCD is $J^{\text{RC}} = 1^{-+}$
- Predicted hybrid meson mass region for experimental search: 1.5 GeV 2.9 GeV

Flux-Tube Hybrid Decays

forbidden/suppressed decay modes

ππ, ηπ, ρπ, ωπ, ...

Isgur & Paton, Phys Rev D31, 2910 (1985)

Partial Wave Analysis unraveling the bumps

$$I(\tau) = \sum_{k \in \epsilon'} \epsilon \epsilon' \rho_{\epsilon \epsilon'}(\tau) \sum_{\alpha \alpha'} {}^{k \epsilon'} V_{\alpha'}^{* \epsilon'} A_{\alpha'}^{*}(\tau)^{k \epsilon} V_{\alpha}^{\epsilon} A_{\alpha}(\tau)$$

For unpolarized beam & target:

$$I(\tau) = \frac{1}{2} \sum_{k \epsilon} \left| \sum_{\alpha} \sum_{k \epsilon}^{k \epsilon} V_{\alpha} A_{\alpha}(\tau) \right|^{2}$$

Helicity Decay Amplitudes

 $A_{\alpha M}(\tau) = A_{\nu}^{\lambda_1 \lambda_2; M} * A_{iso}^{\nu_1 \nu_2; \lambda_1} \cdots$

unknown

 $\tilde{J} = \sqrt{J(J+1)}$

Complex parameters varied in the PWA to fit the data

Partial Wave Analysis Step 1: Decompose to Partial Waves

Partial Wave Analysis Step 2: Extract Resonance Parameters

Observation of Exotic $\pi_1(1600)$

Results from all 4 channels suggest Pomeron production

Photoproduction of Gluonic Excitations

• It has been pointed out¹²³ that in the case of photoproduction exotic hybrids should be produced copiously.

¹Close *et al.* Phys. Rev. D52:1706 (1995) ³Szczepaniak *et al.* Phys. Lett. B516:72 (2001) ²Afanasev *et al.* Phys. Rev. D57:6771 (1998)

GlueX Experiment

Goal: map the spectrum of exotic hybrid mesons

Method: Photo-produce hybrids off proton target and identify the quantum states using Partial Wave Analysis of decay product distributions

diamond

wafer

electron

beam

GlueX Detector

time-of-flight

Linearly Polarized Photon Beam

Microscope:

- Movable to cover different energy ranges
- 12m long vacuum chamber 100 x 5 scintillating fibers (2mm x 2mm)
- 800MeV covered by whole microscope
- 100MHz tagged y/sec on target

1.5T dipole

~8MeV energy bite/column

Photon Polarization:

- 20 µm diamond radiator
- Coherent peak is linearly polarized
- ~40% polarization with peak @ 9GeV
- Peak location tunable with diamond angle
 - photon energy (GeV)

coherent bremstrahlung spectrum

20µm diamond radiator

Fixed array hodoscope:

- 190 scintillators
- 50% coverage below 9GeV y
- 100% coverage above 9GeV y
- Tags 3.0–11.7 GeV y
- ~30MeV energy bite/counter
- 3.5 17 MHz/counter

Barrel Calorimeter

191 layer Pb-scintillating fiber sandwich (15.5X_o) 12.5% sampling fraction 1152 + 192 = 1344 readout sections/end $\sigma_{\epsilon}/E = (5.54/\sqrt{E} \quad 1.6) \%$ $\sigma_{z} = 5 mm/\sqrt{E}$ $\sigma_{t} = 74 ps/\sqrt{E} \quad 33 ps$ angular coverage $11_{\circ} < \theta < 120_{\circ}$

BCAL has 2-ended readout allowing one to reconstruct in 3-D

BCAL module being constructed

Forward Calorimeter

Lead Glass Calorimeter:

- 2800 F8-00 and F108 (center) Pb-glass blocks
- 4cm x 4cm x 45cm
- $\sigma_{\rm E}/{\rm E}=$ (5.7/ $\sqrt{\rm E}$ 2.0) %
- $\sigma_{xy} = 6.4 \text{mm}/\sqrt{\text{E}}$
- angular coverage $2\circ < \theta < 11\circ$

An FCAL module

prototype array

Charged Particle Tracking central & forward drift chambers

Central Drift Chamber:

- 3522 straw tubes (1.6cm diameter)
- 12 axial layers, 16 stereo layers (6°)
 dE/dx for p < 450 MeV/c
- $\cdot \sigma_r = 150 \mu m$
- angular coverage 6°<0<155°

 σ_p/p : 1.5 - 3.0%

Forward Drift Chamber:

- 4 packages, 6 planes/package, 96 wires/plane (2304 sense wires)
- cathode strip readout (48 planes x 216 strips/plane = 10,368 strips)
- $\sigma_r = \sim 200 \mu m$ perpendicular to wire (drift time)
- $\sigma_s = \sim 200 \mu m$ along wire (cathode strips)
- angular coverage 1°<0<30°

prototype FDC chamber

Particle Identification Time-of-flight & dE/dx

GlueX Acceptance

GlueX vs BNL-E852 Acceptance **π⁰η final state**

GlueX

High, and reasonably uniform Acceptance up to 2.5 GeV/c2.

Sensitive to charged particles And photons.

Some particle ID in the initial phases, plans to upgrade this.

Able to fully reconstruct the 4-12 Particle final states.

Additional Physics with GlueX

- Cascade Spectroscopy
- Search for Missing Strangeonia
- PrimEx at 12 GeV

- Measurement of $\Gamma(\eta \rightarrow \gamma \gamma)$ via Primakoff Effect

Summary & Outlook

The Quark Model of hadrons works surprisingly well, yet
 QCD allows for a much richer spectrum of hadronic matter

 The excitation of the gluonic fields leads to an entirely new spectrum of mesons

Several promising exotic candidates exist

- Exotic hybrids should be copiously produced via photoproduction
 - Virtually unexplored production

 The JLAB GlueX program plans to firmly identify and map out the exotic spectrum

