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scatterings

 Prospects



• The non-relativistic constituent quark model (NRCQM) makes 

great success in the description of hadron spectroscopy:

meson (qq), baryon (qqq).

• However, it also predicted a much richer baryon spectrum, where 

some of those have not been seen in N scatterings.

– “Missing Resonances”.
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1. “Missing baryon resonances in N scattering 



PDG2008: 22 nucleon resonances (uud, udd) 
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not well-

established



Dilemma: 

a) The NRCQM is WRONG: quark-diquark configuration? …

b) The NRCQM is CORRECT, but those missing states have only weak 

couplings to N, i.e. small gN*N.  (Isgur, 1980)

Looking for “missing resonances” in N* N, K, K, N, N, N,

N …

(Exotics …)
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Questions: 

Should we take the naïve quark model seriously? 

What is the success and what is the failure?

… …

How far one can go with it?



 The first orbital excitation states in the NRCQM  

In the nonstrange sector, NRCQM allows the 

groundstate [56, 28] (p and n) to be excited 

to [70, 28] and [70, 48] octets, and [70, 210] 

decuplet via single photon absorption. 


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Confirmed recently by JLab Lattice calculation. 

(Talk by D. Richards in MENU2010) 



The SU(6)O(3) symmetry must be broken due to spin-

dependent forces. Thus, state mixings are inevitable.

Several NRCQM selection rules are violated: 

• Moorhouse selection rule (Moorhouse, PRL16, 771 (1966))

•  selection rule (Zhao & Close, PRD74, 094014(2006)) in strong decays

• Faiman-Hendry selection rule (Faiman & Hendry, PR173, 1720 (1968)).



An effective chiral Lagrangian for quark-pseudoscalar-meson coupling 

to keep the meson-baryon interaction invariant under the chiral 

transformation: 

2. Effective chiral Lagrangian for quark-pseudoscalar-

meson interactions 





• Test of Goldberger-Treiman relation: 

The axial vector coupling, gA, relates the hadronic operator  to the 

quark operator j for the j-th quark,  

To equate the quark-level coupling to the hadronic level one for the 

NN vertex, i.e. axial current conservation, one has
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 Baryon excitations in  p  n

Zhong, Zhao, He, and Saghai, PRC76, 065205 (2007); 

Zhong and Zhao, Phys. Rev. C 79, 045202 (2009)
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Zhao, Saghai, Al-Khalili, PLB509, 231(2001); 

Zhao, Al-Khalili, & Bennhold, PRC64, 052201(R)(2001); PRC65, 032201(R) (2002);
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 S-channel transition amplitude with quark level operators 

Non-relativistic expansion: 
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 quark level  hadron level 

Define g-factors: 
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 Compared with Ms
3, amplitude Ms

2 is relatively suppressed by a factor 

of (-1/2)n for each n.

 Higher excited states are relatively suppressed by (kq/32)n/n!

 One can identify the quark motion correlations between the initial and 

final state baryon

 Similar treatment can be done for the u channel



 Separate out individual resonances 





In the SU(6) symmetry limit, 



Goldberger-Treiman relation:

 Model parameters 



Differential cross sections 

Left panel:
 Solid: full calculation

 Dot-dashed: without nucleon 

Born term

Right panel: 
 Solid: full calculation

 Dotted lines: exclusive S11(1535)

 Dot-dashed: without S11(1650)

 Dashed: without t-channel



Left panel:
 Solid: full calculation

 Dot-dashed: without nucleon 

Born term

 Dashed: without D13(1520)

Right panel: 
 Solid: full calculation

 Dotted lines: exclusive S11(1535)

 Dot-dashed: without S11(1650)

 Dashed: without t-channel



Total cross sections

 S11(1535) is dominant near 

threshold. The exclusive cross 

section is even larger than the 

data.

 S11(1650) has a destructive 

interference with the S11(1535), 

and appears to be a dip in the 

total cross section. 

 States from n=2 shell 

account for the second 

enhancement around 1.7 GeV.

Zhong, Zhao, He, and Saghai, 

PRC76, 065205 (2007)



 S-channel resonance excitations in K–p  0 0

Zhong and Zhao, PRC79, 045202 (2009) 



We thus determine the mixing angle by experimental data which 

requires 





 Diff. Xsect. for K–p  0 0



s-channel

=0

is the only s-channel amplitude

K– (su) 

p





U-channel turns to be important



Quark-photon electromagnetic coupling: 

Transition amplitudes in terms of the Mandelstam variables: 

Zhao et al, PRC65, 065204 (2002)

 Baryon excitations in meson photoproduction  



The seagull term is composed of two parts,







Transition amplitudes in the harmonic oscillator basis





 Compared with Ms
3, amplitude Ms

2 is 

relatively suppressed by a factor of (-1/2)n

for each n.

 Higher excited states are relatively 

suppressed by (kq/32)n/n!.

 One can identify the quark motion 

correlations between the initial and final 

state baryon.

 Similar treatment can be done for the u 

channel.

 In principle, all the s- and u-channel 

states have been included in the 

amplitudes, and the quark level operators 

have been related to the hadronic level 

ones through g-factors defined as follows. 

 Then, one has to separate out the 

amplitudes for each single resonance (see 

Ref. Zhao et al, PRC65, 065204 (2002) ).



Some numerical results for pion photoproduction

 magnetic dipole moment:

Zhao et al, PRC65, 065204 (2002)



Differential cross sections for  



Polarized beam asymmetry for 



Polarized target asymmetry for 



Recoil polarization asymmetry for 

Simultaneous account for  p  0 p and  n   p reaction and 

other relevant reactions.

Zhao et al, PRC65, 065204 (2002)




M (,, K …)

N N (N, ,  …)

EM Strong
N*,*

 n  N*  K 

 n  N* (*)   N 27 states

 p  N* (*)   N 19 states

 n  N*   N 

 p  N*   N 

16 states

8 states

 p  N*  K 
8 states

Due to  selection rule

Number of states with the principle quantum number n  2: 

 Selection rule: Zhao & Close, PRD74, 094014(2006) 

Difference due to Moorhouse 

section rule



Prospects - I

1. For the purpose of searching for individual resonance 

excitations, it is essential to have a quark model guidance for 

both known and “missing” states. And then allow the data to 

tell: 

i) which state is favored;  

ii) whether a state beyond the conventional quark model is 

needed; 

iii) how quark model prescriptions for N*NM form factors 

complement with isobaric models.



Prospects - II

2. Understanding the non-resonance background

A reliable estimate of the non-resonance background, such as the 

t- and u-channel. Their interferences with the resonances are 

essentially important.

3. Unitarity constraint

A coherent study of the pseudoscalar photoproduction and meson-

baryon scattering is needed. In particular, a coupled channel study 

will put a unitary constraint on the theory.

Photoproduction of pseudoscalar mesons (, , , K); and N  N; 

Kp , and more are coming out soon…

Q. Z., PRC 63, 035205 (2001) ; 

Q. Z., J.S. Al-Khalili, Z.P. Li, and R.L. Workman, PRC 65, 065204 (2002); 

Q. Z., B. Saghai and Z.P. Li, JPG 28, 1293 (2002); 

X.H. Zhong, Q. Z., J. He, and B. Saghai, PRC 76, 065205 (2007)

X.H. Zhong and Q. Z., arXiv:0811.4212, PRC79, 045202(2009) 



Thanks !



 A revisit to the S-wave state mixing

, , K … 

N, , …



, , K … 

N, , …

S11(1535) S11(1650) 

 0 

The physical states should be orthogonal which means: 

This expectation can be examined by the K-matrix propagator between 

[70, 2 8] and [70, 4 8] mixing states:



Recalling that  

The N*  NM transition amplitudes can be expressed as 

with  



We can then extract the N*NM form factors given by the chiral effective 

Lagrangian in the NRCQM, e.g.  

where 



N threshold 





Relative signs for the N*NM couplings are given by the NRCQM 

Indication of a destructive sign between S11(1535) and 

S11(1650) amplitudes in  p   p, and  p   n.



arXiv: 0810.0997[nucl-th] by Aznauryan, Burkert and Lee.  

It is important to have a correct definition of the common sign 

of amplitudes and relative sign between helicity amplitudes, i.e.  

A1/2, A3/2, and S1/2. 

N*



p S11 (1535):      3q picture      

Opposite sign 

of S1/2!!!

LF  RQM: 

Capstick, Keister,
PR D51 (1995) 3598

Pace, Simula et.al.,

PR D51 (1995) 3598

Combined with the difficulties
in the description of large width 
of S11(1535)  N and large
S11(1535) N,K couplings, 
this shows that 3q picture for 
S11(1535) should be complemented 

Impossible to change 

in quark model !!!

From I. Aznauryan, Electromagnetic N-N*  

Transition Form Factors Workshop, 2008






