THE MOLLER PROJECT AT JEFFERSON LABORATORY

Krishna S. Kumar University of Massachusetts, Amherst

A GLOBAL STRATEGY Direct and Indirect Searches for Physics Beyond the Standard Model

Compelling arguments for "New Dynamics" at the TeV Scale

A comprehensive search for clues requires: Large Hadron Collider as well as Lower Energy: Q² << M_Z²

A GLOBAL STRATEGY Direct and Indirect Searches for Physics Beyond the Standard Model

Compelling arguments for "New Dynamics" at the TeV Scale

A comprehensive search for clues requires: Large Hadron Collider as well as Lower Energy: Q² << M_Z²

Nuclear/Atomic systems address several topics; complement the LHC:

- Neutrino Masses and Mixing
 - $0\nu\beta\beta$ decay, reactor θ_{13} , long baseline experiments
- Rare or Forbidden Processes
 - EDMs, other CP & T-Violation, Charged Lepton Flavor Violation
- Dark Matter Searches
- Precision Electroweak Measurements
 - weak neutral currents at low energy, muon g-2, weak decays

Krishna S. Kumar

OUTLINE

• Physics Motivation

- Weak Neutral Current Interactions at Low Energy
 - Parity-Violating Electron Scattering
- Møller Scattering
 - The MOLLER Project at Jefferson Laboratory
- Experimental Technique
 - Main Components of the Apparatus
 - Statistical & Systematic Errors

• Status and Plans

Krishna S. Kumar

PHYSICS MOTIVATION

Krishna S. Kumar

PRECISION EW PHYSICS

Start with 3 fundamental inputs needed: α_{em}, G_F and M_Z

Other experimental observables predicted at 0.1% level: sensitive to heavy particles via higher order quantum corrections

4th and 5th best measured parameters: $sin^2\theta_W$ and M_W All weak neutral current amplitudes are functions of $sin^2\theta_W$

 $\frac{Muon \, decay}{\prod_{WW} - \prod_{ZZ}} \propto m_t^2 - m_b^2$

Krishna S. Kumar

There are often mechanisms to suppress Flavor Changing Neutral Currents

Krishna S. Kumar

There are often mechanisms to suppress Flavor Changing Neutral Currents

Flavor Diagonal Interactions Consider $f_1\bar{f}_1 \rightarrow f_2\bar{f}_2$ or $f_1f_2 \rightarrow f_1f_2$ $L_{f_1f_2} = \sum_{i,j=L,R} \frac{4\pi}{\Lambda_{ij}^2} \eta_{ij}\bar{f}_{1i}\gamma_{\mu}f_{1i}\bar{f}_{2j}\gamma^{\mu}f_{2j}$

Many new physics models give rise to such terms: Heavy Z's, compositeness, extra dimensions, SUSY...

Krishna S. Kumar

There are often mechanisms to suppress Flavor Changing Neutral Currents

Flavor Diagonal Interactions Consider $f_1\bar{f}_1 \rightarrow f_2\bar{f}_2$ or $f_1f_2 \rightarrow f_1f_2$ $L_{f_1f_2} = \sum_{i,j=L,R} \frac{4\pi}{\Lambda_{ij}^2} \eta_{ij} \bar{f}_{1i} \gamma_{\mu} f_{1i} \bar{f}_{2j} \gamma^{\mu} f_{2j}$

Many new physics models give rise to such terms: Heavy Z's, compositeness, extra dimensions, SUSY...

One goal of neutral current measurements at low energy AND colliders: Access $\Lambda > 10$ TeV for as many f_1f_2 and L,R combinations as possible

Krishna S. Kumar

Colliders access scales Λ 's ~ 10 TeV Tevatron, LEP, SLC, LEP200, HERA - L,R combinations accessed are mostly parity-conserving

Z boson production accessed some parity-violating combinations but...

on resonance: Az imaginary $\left|\mathbf{A_Z} + \mathbf{A_{new}} \right|^2
ightarrow \mathbf{A_Z^2} \left[\mathbf{1} + \left(rac{\mathbf{A_{new}}}{\mathbf{A_Z}}
ight)^2
ight]$

Krishna S. Kumar

Colliders access scales Λ 's ~ 10 TeV Tevatron, LEP, SLC, LEP200, HERA - L,R combinations accessed are mostly parity-conserving

Z boson production accessed some parity-violating combinations but...

on resonance: Az imaginary

$$\begin{vmatrix} A_{Z} + A_{new} \end{vmatrix}^{2} \rightarrow A_{Z}^{2} \left[1 + \left(\frac{A_{new}}{A_{Z}} \right)^{2} \right]$$
 no interference!

Colliders access scales Λ 's ~ 10 TeV Tevatron, LEP, SLC, LEP200, HERA - L,R combinations accessed are mostly parity-conserving

Z boson production accessed some parity-violating combinations but...

on resonance: Az imaginary

$$\begin{vmatrix} A_{Z} + A_{new} \end{vmatrix}^{2} \rightarrow A_{Z}^{2} \left[1 + \left(\frac{A_{new}}{A_{Z}} \right)^{2} \right]$$
no interference!

parity-violating electron scattering

Electromagnetic amplitude interferes with Z-exchange as well as any new physics

$$ig|\mathbf{A}_{\gamma}+\mathbf{A}_{\mathbf{Z}}+\mathbf{A}_{ ext{new}}ig|^{\mathbf{2}}
ightarrow \mathbf{A}_{\gamma}^{\mathbf{2}}\Bigg[\mathbf{1}+\mathbf{2}ig(rac{\mathbf{A}_{\mathbf{Z}}}{\mathbf{A}_{\gamma}}ig)+\mathbf{2}ig(rac{\mathbf{A}_{ ext{new}}}{\mathbf{A}_{\gamma}}ig)\Bigg]$$

Krishna S. Kumar

Colliders access scales Λ 's ~ 10 TeV Tevatron, LEP, SLC, LEP200, HERA - L,R combinations accessed are mostly parity-conserving

Z boson production accessed some parity-violating combinations but...

on resonance: Az imaginary $\begin{vmatrix} A_{Z} + A_{new} \end{vmatrix}^{2} \rightarrow A_{Z}^{2} \left[1 + \left(\frac{A_{new}}{A_{Z}} \right)^{2} \right]$ no interference!

parity-violating electron scattering

Electromagnetic amplitude interferes with Z-exchange as well as any new physics

$$ig| \mathbf{A}_\gamma + \mathbf{A}_\mathbf{Z} + \mathbf{A}_{ ext{new}} ig|^{\mathbf{2}} o \mathbf{A}_\gamma^{\mathbf{2}} igg[\mathbf{1} + \mathbf{2} igg(rac{\mathbf{A}_\mathbf{Z}}{\mathbf{A}_\gamma} igg) + \mathbf{2} igg(rac{\mathbf{A}_{ ext{new}}}{\mathbf{A}_\gamma} igg) igg]$$

longitudinally polarized e γ, Z^0

$$-A_{LR} = A_{PV} = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\downarrow} + \sigma_{\downarrow}} \sim \frac{A_{weak}}{A_{\gamma}} \sim \frac{G_F Q^2}{4 \pi \alpha} (g_A^{\ e}g_V^{\ T} + \beta g_V^{\ e}g_A^{\ T})$$

where $A_{LR} = A_{PV} = \frac{\sigma_{\downarrow} - \sigma_{\downarrow}}{\sigma_{\downarrow} + \sigma_{\downarrow}} \sim \frac{A_{weak}}{A_{\gamma}} \sim \frac{G_F Q^2}{4 \pi \alpha} (g_A^{\ e}g_V^{\ T} + \beta g_V^{\ e}g_A^{\ T})$
where $A_{PV} \sim 10^{-5} \cdot Q^2$ to $10^{-4} \cdot Q^2$

Krishna S. Kumar

Colliders access scales Λ 's ~ 10 TeV Tevatron, LEP, SLC, LEP200, HERA - L,R combinations accessed are mostly parity-conserving

Z boson production accessed some parity-violating combinations but...

on resonance: Az imaginary

$$\begin{vmatrix} \mathbf{A}_{\mathbf{Z}} + \mathbf{A}_{new} \end{vmatrix}^2 \rightarrow \mathbf{A}_{\mathbf{Z}}^2 \left[1 + \left(\frac{\mathbf{A}_{new}}{\mathbf{A}_{\mathbf{Z}}} \right)^2 \right]$$
 no interference!

parity-violating electron scattering

Electromagnetic amplitude interferes with Z-exchange as well as any new physics

congitudinally polarized
$$e^{-1}$$

 $\left|\mathbf{A}_{\gamma}+\mathbf{A}_{\mathbf{Z}}+\mathbf{A}_{\mathrm{new}}
ight|^{2}
ightarrow\mathbf{A}_{\gamma}^{2}\left[1+2\left(rac{\mathbf{A}_{\mathbf{Z}}}{\mathbf{A}}
ight)+2\left(rac{\mathbf{A}_{\mathrm{new}}}{\mathbf{A}}
ight)
ight|$

At very forward angles, $A_{PV} \propto g_V^T$, the target vector coupling, called the **weak charge Q**_W

Thumb rule: measure $\delta(\sin^2 \theta_W) \lesssim 0.002$ or better to access the multi-TeV scale

Krishna S. Kumar

ELECTRON WEAK CHARGE

Parity-Violating Electron-Electron (Møller) Scattering

Purely leptonic reaction

Derman and Marciano (1978)

$$\mathbf{A}_{\mathbf{PV}} = -\mathbf{m}\mathbf{E}\frac{\mathbf{G}_{\mathbf{F}}}{\sqrt{2}\pi\alpha}\frac{\mathbf{16}\sin^{2}\Theta}{(\mathbf{3}+\cos^{2}\Theta)^{2}}\mathbf{Q}_{\mathbf{W}}^{\mathbf{e}}$$

50 GeV at SLAC: ~ 150 ppb!

E158 at SLAC Major technical challenges

ELECTRON WEAK CHARGE

Parity-Violating Electron-Electron (Møller) Scattering

Purely leptonic reaction

Derman and Marciano (1978)

$$\mathbf{A}_{\mathbf{PV}} = -\mathbf{m}\mathbf{E}\frac{\mathbf{G}_{\mathbf{F}}}{\sqrt{2}\pi\alpha}\frac{\mathbf{16}\sin^{2}\Theta}{(\mathbf{3}+\cos^{2}\Theta)^{2}}\mathbf{Q}_{\mathbf{W}}^{\mathbf{e}}$$

50 GeV at SLAC: ~ 150 ppb!

E158 at SLAC Major technical challenges

Final Result:

$A_{PV} = (-131 \pm 14 \pm 10) \times 10^{-9}$

Phys. Rev. Lett. 95 081601 (2005)

Krishna S. Kumar

Krishna S. Kumar

The MOLLER Project at Jefferson Laboratory, WHAT2010, July 28 2010

8

THE WEAK MIXING ANGLE

Running of θ_W : Bookkeeping for off-resonance measurements

THE WEAK MIXING ANGLE

Running of θ_W : Bookkeeping for off-resonance measurements

• NuTeV result requires careful consideration of nuclear corrections

Krishna S. Kumar

THE WEAK MIXING ANGLE

Running of θ_W : Bookkeeping for off-resonance measurements

- ¹³³Cs Atomic Parity Violation
- NuTeV result requires careful consideration of nuclear corrections
- **Future Electron Scattering Measurements**
 - e-q measurements: QWeak (running) and DIS (Paul Souder talk)
 - Improved on E158 by a factor of 5: MOLLER at 12 GeV JLab

Krishna S. Kumar

 $\delta(\sin^2\theta_W) = \pm 0.00026 \text{ (stat.)} \pm 0.00012 \text{ (syst.)} \implies \sim 0.1\%$

Krishna S. Kumar

 $A_{PV} = 35.6 \ ppb$ 38 weeks $\delta(A_{PV}) = 0.73 \ ppb$ $\longrightarrow \delta(Q^e_W) = \pm 2.1 \ (stat.) \pm 1.0 \ (syst.) \%$

 $\delta(\sin^2\theta_W) = \pm 0.00026 \ (stat.) \pm 0.00012 \ (syst.) \implies \sim 0.1\%$

best contact interaction reach at low Q^2

Krishna S. Kumar

$\begin{array}{c} \mathcal{W} = 0.05 \\ \mathcal{W} = 0.$

 $A_{PV} = 35.6 \text{ ppb}$ 38 weeks $\delta(A_{PV}) = 0.73 \text{ ppb}$ $\longrightarrow \delta(Q^e_W) = \pm 2.1 \text{ (stat.)} \pm 1.0 \text{ (syst.) \%}$

 $\delta(\sin^2\theta_W) = \pm 0.00026 \ (stat.) \pm 0.00012 \ (syst.) \implies \sim 0.1\%$

best contact interaction reach at low Q^2

$$\begin{array}{l} \label{eq:constraint} \textit{Current limits on 4-electron contact interactions:} \\ \textit{LEPII at 200 GeV} \\ \textit{(Average of all 4 LEP experiments)} \\ \hline \Lambda \\ \hline \sqrt{|\mathbf{g}_{\mathrm{RR}}^2 + \mathbf{g}_{\mathrm{LL}}^2|} = 4.4 \ \mathrm{TeV} \quad \mathrm{OR} \quad \frac{\Lambda}{\mathbf{g}_{\mathrm{RL}}} = 5.2 \ \mathrm{TeV} \\ \textit{insensitive to } |\mathbf{g}_{\mathrm{RR}}^2 - \mathbf{g}_{\mathrm{LL}}^2| \end{array}$$

Krishna S. Kumar

$\begin{array}{c} \mathcal{W} = 0.05 \\ \mathcal{W} = 0.$

 $A_{PV} = 35.6 \text{ ppb}$ 38 weeks $\delta(A_{PV}) = 0.73 \text{ ppb}$ $\longrightarrow \delta(Q^e_W) = \pm 2.1 \text{ (stat.)} \pm 1.0 \text{ (syst.) \%}$

 $\delta(\sin^2\theta_W) = \pm 0.00026 \ (stat.) \pm 0.00012 \ (syst.) \implies \sim 0.1\%$

best contact interaction reach at low Q^2

Current limits on 4-electron contact interactions:ConLEPII at 200 GeV
(Average of all 4 LEP experiments) $\sqrt{|g|}$ $\frac{\Lambda}{\sqrt{|g_{RR}^2 + g_{LL}^2|}} = 4.4 \text{ TeV}$ OR $\frac{\Lambda}{g_{RL}} = 5.2 \text{ TeV}$
insensitive to $|g_{RR}^2 - g_{LL}^2|$ Length scale

Krishna S. Kumar

Compositeness scale:

$$\sqrt{|\mathbf{g}_{\mathbf{R}\mathbf{R}}^2 - \mathbf{g}_{\mathbf{L}\mathbf{L}}^2|} = 2\pi$$

 \frown $\Lambda = 47 \text{ TeV}$

Length scale probed: 4×10^{-21} m

Krishna S. Kumar

Krishna S. Kumar

NEW PHYSICS AT LHC (1) Assume there is a SUSY signal discovered

Does Supersymmetry provide a candidate for dark matter?

- ·B and/or L need not be conserved (RPV): neutralino decay
 - neutralino then unlikely to be a dark matter candidate
 - •neutrinos are Majorana

Krishna S. Kumar

NEW PHYSICS AT LHC (2) Assume a new, heavy vector boson is discovered

•Virtually all GUT models predict new Z's: LHC reach ~ 5 TeV •With high luminosity at LHC, 1-2 TeV Z' properties can be extracted •A_{PV} can help separate left- and right-handed couplings

Suppose a 1 to 2 TeV heavy Z' is discovered at the LHC

•What are its vector- and axial-vector couplings?

3

$$\begin{split} \sqrt{2}\mathbf{G}_{\mathbf{F}}\delta(\mathbf{Q}_{\mathbf{W}}^{\mathbf{e}}) &= \frac{1}{(7.5 \text{ TeV})^2} \\ &= \frac{|\mathbf{g}_{\mathbf{R}\mathbf{R}}^2 - \mathbf{g}_{\mathbf{L}\mathbf{L}}^2|}{\Lambda^2} = \frac{\mathbf{e}_{\mathbf{R}}^2 - \mathbf{e}_{\mathbf{L}}^2}{\mathbf{M}_{\mathbf{Z}'}^2} \end{split}$$

e

Ζ

LHC data can extract the mass, width and $A_{FB}(s)$

constraint on e_R/e_L

The MOLLER Project at Jefferson Laboratory, WHAT2010, July 28 2010

EXPERIMENTAL DESIGN

Krishna S. Kumar

PROGRESS OVER 3 DECADES

Parity-violating electron scattering has become a precision tool

Steady progress in technology towards:

- part per billion systematic control
- 1% systematic control
- Major developments in
 - photocathodes (I & P)
 - polarimetry
 - high power cryotargets
 - nanometer beam stability
 - precision beam diagnostics
 - low noise electronics
 - radiation hard detectors

Krishna S. Kumar

MOLLER HALL LAYOUT

Krishna S. Kumar
MOLLER APPARATUS Target, spectrometer, detectors

- Most thickness for least radiative losses
- No nuclear scattering background
- Not easy to polarize

Need as much target thickness as technically feasible
Tradeoff between statistics and systematics
Default: Same geometry as E158

High Power Liquid Hydrogen Target

parameter	value
length	150 cm
thickness	10.7 gm/cm ²
X 0	17.5%
<i>р</i> ,Т	<i>35 psia, 20K</i>
power	5000 W

Krishna S. Kumar

MOLLER APPARATUS Target, spectrometer, detectors

- Most thickness for least radiative losses
- No nuclear scattering background
- Not easy to polarize

Need as much target thickness as technically feasible
Tradeoff between statistics and systematics
Default: Same geometry as E158

High Power Liquid Hydrogen Target

parameter	value
length	150 cm
thickness	10.7 gm/cm ²
X 0	17.5%
<i>р,</i> Т	<i>35 psia, 20K</i>
power	5000 W

Radiation-hard detectors with

muthal cove

Krishna S. Kumar

Krishna S. Kumar

Krishna S. Kumar

DETECTOR SYSTEMS

Integrating Detectors:

- Moller and e-p Electrons:
 - radial and azimuthal segmentation
 - quartz with air lightguides & PMTs
- pions and muons:
 - quartz sandwich behind shielding
- luminosity monitors
 - beam & target density fluctuations

Krishna S. Kumar

DETECTOR SYSTEMS

Integrating Detectors:

- Moller and e-p Electrons:
 - radial and azimuthal segmentation
 - quartz with air lightguides & PMTs
- pions and muons:
 - quartz sandwich behind shielding
- luminosity monitors
 - beam & target density fluctuations

Krishna S. Kumar

DETECTOR SYSTEMS

Krishna S. Kumar

STATISTICS & SYSTEMATICS

parameter	value
cross-section	45.1 μBarn
Rate @ 75 µA	135 GHz
pair stat. width (1 kHz)	82.9 ppm
δ(A _{raw}) (6448 hrs)	0.544 ppb
δ(A _{stat})/A (80% pol.)	2.1%
δ(sin ² θw)stat	0.00026

Irreducible Backgrounds:

- Elastic e-p scattering
 - well-understood and testable with data
 - 8% dilution, 7.5±0.4% correction
- Inelastic e-p scattering
 - sub-1% dilution
 - large EW coupling, 4±0.4% correction
 - variation of Apv with r and ϕ

Krishna S. Kumar

STATISTICS & SYSTEMATICS

parameter	value
cross-section	45.1 μBarn
Rate @ 75 µA	135 GHz
pair stat. width (1 kHz)	82.9 ppm
δ(A _{raw}) (6448 hrs)	0.544 ppb
δ(A _{stat})/A (80% pol.)	2.1%
δ(sin²θw) stat	0.00026

Irreducible Backgrounds:

- Elastic e-p scattering
 - well-understood and testable with data
 - 8% dilution, 7.5±0.4% correction
- Inelastic e-p scattering
 - sub-1% dilution
 - large EW coupling, 4±0.4% correction
 - variation of Apv with r and ϕ

Krishna S. Kumar

- photons and neutrons
- mostly 2-bounce collimation system
- dedicated runs to measure "blinded" response
- pions and muons
- real and virtual photo-production and DIS
- prepare for continuous parasitic measurement
- estimate 0.5 ppm asymmetry @ 0.1% dilution

STATISTICS & SYSTEMATICS

parameter	value
cross-section	45.1 μBarn
Rate @ 75 µA	135 GHz
pair stat. width (1 kHz)	82.9 ppm
δ(A _{raw}) (6448 hrs)	0.544 ppb
δ(A _{stat})/A (80% pol.)	2.1%
δ(sin²θw) stat	0.00026

Irreducible Backgrounds:

- Elastic e-p scattering
 - well-understood and testable with data
 - 8% dilution, 7.5±0.4% correction
- Inelastic e-p scattering
 - sub-1% dilution
 - large EW coupling, 4±0.4% correction
 - variation of Apv with r and ϕ

photons and neutrons

- mostly 2-bounce collimation system
- dedicated runs to measure "blinded" response
- pions and muons
- real and virtual photo-production and DIS
- prepare for continuous parasitic measurement
- estimate 0.5 ppm asymmetry @ 0.1% dilution

source of error	% error
absolute value of Q ²	0.5
beam second order	0.4
longitudinal beam polarization	0.4
inelastic e-p scattering	0.4
elastic e-p scattering	0.3
beam first order	0.3
pions and muons	0.3
transverse polarization	0.2
photons and neutrons	0.1
Total	1.0

Krishna S. Kumar

TECHNICAL CHALLENGES

• ~ 150 GHz scattered electron rate

- Design to flip Pockels cell ~ 2 kHz
- 80 ppm pulse-to-pulse statistical fluctuations
 - Electronic noise and density fluctuations < 10⁻⁵
 - Pulse-to-pulse beam jitter ~ 10s of microns at 1 kHz
 - Pulse-to-pulse beam monitoring resolution ~ 10 ppm and few microns at 1 kHz

1 nm control of beam centroid on target

- Modest improvement on control of polarized source laser transport elements
- Improved methods of "slow helicity reversal"
- > 10 gm/cm² target needed to achieve desired luminosity
 - 1.5 meter Liquid Hydrogen target: ~ 5 kW @ 85 μ A
- Full Azimuthal acceptance with θ_{lab} ~ 5 mrad
 - novel two-toroid spectrometer
 - radiation hard, highly segmented integrating detectors
- Robust and Redundant 0.4% beam polarimetry
 - Plan to pursue both Compton and Atomic Hydrogen techniques

Krishna S. Kumar

STATUS AND PLANS

- Project received PAC approval: Jan '09
- Director's review of physics goals and concept: Jan '10
- Aim to develop project funding (US + foreign): 2011-12
- Aim to install at JLab after 12 GeV upgrade: late 2015

Steering Committee:

D.Armstrong, R.Carlini, G.Cates, K.de Jager, Y.Kolomensky, K.Kumar (chair),
 F.Maas, D.Mack, K.Paschke, M.Pitt, G.Smith, P.Souder, W.van Oers

• Working Groups & Conveners

- Polarized Source G. Cates
- Beam & Beam Instrumentation M. Pitt
- Target G. Smith
- Spectrometer K. Kumar
- Integrating Detectors D. Mack
- Tracking Detectors D. Armstrong
- Polarimetry K. Paschke
- Electronics/DAQ R. Michaels
- Simulations N. Simicevic / K. Grimm

expression of interest: not yet finalized

sub-system	Institutions
polarized source	UVa, JLab, Miss. St.
Target	JLab, VPI, Miss. St.
Spectrometer	Canada, ANL, MIT, UVa
Integrating Detectors	Syracuse, Canada, JLab, FIU, UNC A&T, VPI
Luminosity Monitors	VPI, Ohio U.
Pion Detectors	UMass/Smith, LATech
Tracking Detectors	William & Mary, Canada, INFN Roma
Electronics	Canada, JLab
Beam Monitoring	VPI, UMass, JLab
Polarimetry	UVa, Syracuse, JLab, CMU, ANL, Miss. St., Claremont-Ferrand, Mainz
Data Acquisition	Ohio U., Rutgers U.
Simulations	LATech, UMass/Smith, Berkeley, UVa

(Canada: UBC, Manitoba, Winnipeg, TRIUMF)

Krishna S. Kumar

The MOLLER Project at Jefferson Laboratory, WHAT2010, July 28 2010

Need to expand

collaboration

further!

22

SUMMARY

- Projected Result from an A_{PV} measurement in Møller Scattering $A_{PV} = 35.6 \text{ ppb}$ $\delta(A_{PV}) = 0.73 \text{ ppb}$ $\delta(Q^e_W) = \pm 2.1 \text{ (stat.)} \pm 1.0 \text{ (syst.)} \%$ $\delta(\sin^2\theta_W) = \pm 0.00026 \text{ (stat.)} \pm 0.00012 \text{ (syst.)}$ $\longrightarrow \sim 0.1\%$
- Opportunity with high visibility and large potential payoff
 - The weak mixing angle is a fundamental parameter of EW physics
 - A cost-effective project has been elusive until now
 - expensive ideas reach perhaps 0.2% (reactor or accelerator v's, LHC Z production...)
 - sub-0.1% requires a new machine (e.g. Z- or v-factory, linear collider....)
 - physics impact on nuclear physics, particle physics and cosmology
 - pin down parameter for other precision low energy measurements
 - help decipher potential LHC anomalies at the TeV scale
 - shed light on feasibility of SUSY dark matter via search for R-Parity violation
- NSAC Long Range Plan strongly endorsed the physics
 - part of fundamental symmetries initiative to tune of 25M\$
 - will need significant foreign participation to succeed

• 11 GeV JLab beam is a unique instrument that makes this feasible

Krishna S. Kumar

OPTICAL PUMPING

Optical pumping of a GaAs wafer
Rapid helicity reversal: change sign of longitudinal polarization ~ kHz to minimize drifts (like a lockin amplifier)
Control helicity-correlated beam motion: under sign flip, keep beam stable at the sub-micron level

Beam helicity is chosen pseudo-randomly at multiple of 60 Hz
 sequence of "window multiplets"

MOLLER will plan to use ~ 2 kHz reversal; subtleties in details of timing

Noise characteristics have been unimportant in past experiments: Not so for PREX, Qweak and MOLLER....

Krishna S. Kumar

FLUX INTEGRATION

"Flux Integration": very high rates

direct scattered flux to background-free region

Detector D, Current I: F = D/I

 $\begin{array}{c|c}
 & \Delta I \\
\hline 2I \\
\hline 2I \\
\hline 2I \\
\hline 2I \\
\hline 2D \\
\hline 2D \\
\hline 2D \\
\hline \Delta D \\
\hline 2D \\
\hline 2D$

After corrections, variance of A_{pair} must get as close to counting statistics as possible: ~ 80 ppm (2kHz); central value then reflects A_{phys}

Experimental Challenge & Systematic Control

Krishna S. Kumar

FLUX INTEGRATION

"Flux Integration": very high rates

direct scattered flux to background-free region

Detector D, Current I: F = D/I

 $\begin{array}{c|c}
\Delta I \\
\hline 2I \\
\hline 2D \\$

After corrections, variance of A_{pair} must get as close to counting statistics as possible: ~ 80 ppm (2kHz); central value then reflects A_{phys}

Experimental Challenge & Systematic Control

• Must minimize both random and helicity-correlated fluctuations in the integrated window-pair monitor response of electron beam trajectory, energy and spot-size.

Krishna S. Kumar

SPECTROMETER CHOICE

- Avoid superconductors
 - ~150 kW of photons from target
 - Collimation extremely challenging
- Quadrupoles a la E158
 - high field dipole chicane
 - poor separation from background
 - ~ 20-30% azimuthal acceptance loss
- Two Warm Toroids

100% azimuthal acceptance

- better separation from background

Odd number of coils: both forward & backward Mollers in same phi-bite

Krishna S. Kumar

SPECTROMETER LAYOUT

Krishna S. Kumar

SPECTROMETER LAYOUT

SIGNAL & BACKGROUNDS

parameter	value
cross-section	45.1 μBarn
Rate @ 75 µA	135 GHz
pair stat. width (1 kHz)	82.9 ppm
δ(A _{raw}) (6448 hrs)	0.544 ppb
δ(A _{stat})/A (80% pol.)	2.1%
δ(sin ² θ _w) _{stat}	0.00026

Krishna S. Kumar

SIGNAL & BACKGROUNDS

parameter	value
cross-section	45.1 μBarn
Rate @ 75 µA	135 GHz
pair stat. width (1 kHz)	82.9 ppm
δ(A _{raw}) (6448 hrs)	0.544 ppb
δ(A _{stat})/A (80% pol.)	2.1%
$\delta(sin^2\theta_W)_{stat}$	0.00026

Statistical Error

- 83 ppm 1 kHz pulse-pair width @ 75 μ A
- table assumes 80% polarization & no degradation of statistics from other sources
 - realistic goal ~ 90 ppm
- potential for recovering running time with higher Pe, higher efficiency, better spectrometer focus....

Krishna S. Kumar

SIGNAL & BACKGROUNDS

parameter	value
cross-section	45.1 μBarn
Rate @ 75 μA	135 GHz
pair stat. width (1 kHz)	82.9 ppm
δ(A _{raw}) (6448 hrs)	0.544 ppb
δ(A _{stat})/A (80% pol.)	2.1%
δ(sin²θw) _{stat}	0.00026

Backgrounds:

- photons and neutrons
- mostly 2-bounce collimation system
- dedicated runs to measure "blinded" response
- pions and muons
- real and virtual photo-production and DIS
- prepare for continuous parasitic measurement
- estimate 0.5 ppm asymmetry @ 0.1% dilution

Statistical Error

- 83 ppm 1 kHz pulse-pair width @ 75 μ A
- table assumes 80% polarization & no degradation of statistics from other sources
 - realistic goal ~ 90 ppm
- potential for recovering running time with higher Pe, higher efficiency, better spectrometer focus....

• Elastic e-p scattering

- well-understood and testable with data
- 8% dilution, 7.5±0.4% correction

• Inelastic e-p scattering

- sub-1% dilution
- large EW coupling, 4±0.4% correction
- variation of A_PV with r and ϕ

Krishna S. Kumar

SYSTEMATICS OVERVIEW

source of error	% error
absolute value of Q ²	0.5
beam second order	0.4
longitudinal beam polarization	0.4
inelastic e-p scattering	0.4
elastic e-p scattering	0.3
beam first order	0.3
pions and muons	0.3
transverse polarization	0.2
photons and neutrons	0.1
Total	1.0

- I order beam helicity correlations
- position to 0.5 nm, angle to 0.05 nrad
- active intensity, position and angle feedback
- II order beam helicity correlations
- control laser spotsize fluctuations to 10^{-4}
- slow flips with Wien filter and g-2 energy flip

- longitudinal beam polarization
- Goal: redundant, continuous monitoring with Compton & Atomic Hydrogen Moller
- Redundancy backup plan: High field Moller
- transverse beam polarization
- kinematic separation allows online monitoring
- slow feedback using Wien filter
- Absolute value of Q^2
- dedicated tracking and scanning detectors
- experience with HAPPEXII & Qweak

Krishna S. Kumar

SCATTERED FLUX

Initial and final state radiation effects in target

Krishna S. Kumar

QUARK WEAK CHARGES

 $\delta(C_{1q}) \propto (+\eta_{RL}^{eq} + \eta_{RR}^{eq} - \eta_{LL}^{eq} - \eta_{LR}^{eq}) \longrightarrow PV \text{ elastic e-p, } APV$ $\delta(C_{2q}) \propto (-\eta_{RL}^{eq} + \eta_{RR}^{eq} - \eta_{LL}^{eq} + \eta_{LR}^{eq}) \longrightarrow PV$ deep inelastic

A_{PV} in elastic e-p scattering:

QUARK WEAK CHARGES

 $\delta(C_{1q}) \propto (+\eta_{RL}^{eq} + \eta_{RR}^{eq} - \eta_{LL}^{eq} - \eta_{LR}^{eq}) \longrightarrow PV \text{ elastic e-p, APV}$ $\delta(C_{2q}) \propto (-\eta_{RL}^{eq} + \eta_{RR}^{eq} - \eta_{LL}^{eq} + \eta_{LR}^{eq}) \longrightarrow PV \text{ deep inelastic}$

Krishna S. Kumar

QWEAK@JEFFERSON LAB Precision Measurement of the Proton's Weak Charge **Elastically Scattered Electron** Luminosity Monitors Region I, II and III detectors are for Q² measurements at low beam current ~3.2 m **Region III Drift Chambers Toroidal Magnet** Region II 50 **Drift Chambers** Eight Fused Silica (quartz) Čerenkov **Region I GEM Detectors Detectors - Integrating Mode** Primary Collimator with 8 openings 35 cm Liquid Hydrogen Target Polarized Electron Beam, 1.165 GeV, 150 μA, P ~ 85%

Design and construction over past several years
Installation nearly complete
Pilot beams a few days ago!
Commissioning: next few weeks
Data ~ 2010 thru mid-2012

New, complementary constraints on leptonquark interactions at the TeV scale

Krishna S. Kumar

DEEP INELASTIC SCATTERING

With Qweak and APV, C_{1i}'s measured, but C_{2i}'s still unconstrained

e	A _{PV} in Electron-Nucleon DIS:
$Z^* \begin{cases} \gamma^* \\ \gamma^* $	$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi \alpha} \left[a(x) + f(y) b(x) \right]$
	$Q^2 >> 1 \ GeV^2$, $W^2 >> 4 \ GeV^2$

 $a(x) = \frac{3}{10} \left[(2C_{1u} - C_{1d}) \right] + \cdots$ $b(x) = \frac{3}{10} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \cdots$

For a ²H target, assuming charge symmetry, structure functions largely cancel in the ratio Must measure A_{PV} sub-1% fractional accuracy! \implies luminosity > 10³⁸/cm²/s at JLab

DEEP INELASTIC SCATTERING

With Qweak and APV, C_{1i}'s measured, but C_{2i}'s still unconstrained

ee-	A _{PV} in Electron-Nucleon DIS
$Z^* \left\{ \gamma^* \right\}$	$A = \frac{G_F Q^2}{[a(x) + f(y)b(x)]}$
N X	$n_{PV} = \sqrt{2\pi\alpha} \left[\alpha(x) + j(y) \frac{\partial(x)}{\partial y} \right]$
	$Q^2 >> 1 \ GeV^2$, $W^2 >> 4 \ GeV^2$

 $a(x) = \frac{3}{10} \left[(2C_{1u} - C_{1d}) \right] + \cdots$ $b(x) = \frac{3}{10} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \cdots$

For a ²H target, assuming charge symmetry, structure functions largely cancel in the ratio Must measure A_{PV} sub-1% fractional accuracy! \square luminosity > 10³⁸/cm²/s at JLab

- First experiment at 6 GeV: ran Oct-Dec '09; 3-4% accuracy @ Q² ~ 1-2 GeV²
- Approved Hall C proposal at 11 GeV using planned upgrade for spectrometers
- SOLID: New large acceptance solenoidal spectrometer approved for Hall A

DEEP INELASTIC SCATTERING

With Qweak and APV, C_{1i}'s measured, but C_{2i}'s still unconstrained

e-	A _{PV} in Electron-Nucleon DIS
$Z^* \left\{ \gamma^* \right\}$	$A_{PV} = \frac{G_F Q^2}{\left[a(x) + f(y)b(x)\right]}$
X	$\sqrt{2\pi\alpha^{L}}$
	$Q^2 >> 1 \; GeV^2$, $W^2 >> 4 \; GeV^2$

$$a(x) = \frac{3}{10} \left[(2C_{1u} - C_{1d}) \right] + \cdots$$
$$b(x) = \frac{3}{10} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \cdots$$

For a ²H target, assuming charge symmetry, structure functions largely cancel in the ratio Must measure A_{PV} sub-1% fractional accuracy! \implies luminosity > 10³⁸/cm²/s at JLab

First experiment at 6 GeV: ran Oct-Dec '09; 3-4% accuracy @ Q² ~ 1-2 GeV²
Approved Hall C proposal at 11 GeV using planned upgrade for spectrometers

• SOLID: New large acceptance solenoidal spectrometer approved for Hall A

e-

Ν

MSSM Sensitivity

• If ~ 200 GeV sparticles; useful benchmark

- What are the scenarios for LHC SUSY searches that allows interesting discovery phase space for MOLLER?
- If LHC discovers light squarks, expect greater than 2 sigma deviation in MOLLER
- If LHC doesnt find squarks, then they are heavy. If winos are relatively light, then MOLLER sensitive to light sleptons

leptonic forward backward asymmetry tau polarization asymmetry left-right asymmetry

b-quark forward backward asymmetry c-quark forward backward asymmetry hadronic charge asymmetry

Doubly Charged Scalars

$$\sqrt{2}\mathbf{G}_{\mathbf{F}}\delta(\mathbf{Q}_{\mathbf{W}}^{\mathbf{e}}) = \frac{1}{(7.5 \text{ TeV})^2} \qquad \mathcal{M}^{\mathrm{PV}} \sim \frac{|h_{L,R}^{ee}|^2}{2M_{\delta_L}^2} \bar{e}_L\gamma_{\mu}e_L\bar{e}_L\gamma^{\mu}e_L$$

$$\frac{M_{\delta_L}}{|h_L^{ee}|} \sim 5.3 \text{ TeV}$$

Sensitivity better than LEP200
e-p inelastic background

r (m)

իններվեր

1.1

1.2

1.3

r (m)

inelastic p-Z coupling unknown at diffractive kinematics

EI58 measured I0⁻⁴ x Q² A_{PV} as function of r & φ

4% correction, 0.4 % error

Transverse Average transverse asymmetry, energy weighted detectors

Average transverse asymmetry

(mqq) A_T (ppm) 10 10 A 5 0 0 -10-1010 25 15 25 5 15 20 detector number detector number Initial beam setup ~ 1 degree 50 ppb error in 4 hours: 0.5 degree precision Feedback 25 times in ~ 1 week Grand average: 0.04 degrees + azimuthal cancellation

Overview of the Møller LH₂ Target System

Requirements: high luminosity (thick target), high cooling power, very low noise

beam conditions: helicity flip 2000 Hz, 85 μA, 11 GeV e⁻ beam rastered 5x5 mm²

 \rightarrow deposits 4546 W in LH₂, total target power 5000 W (including overhead)

- LH₂ conditions: 20 K, 35 psia (2.4 atm), 1 kg/s (3.7 K sub-cooled liquid)
- closed re-circulating cryogenic loop for LH_2 with 150 cm (10.7 g/cm², 17.5 % rl) Al cell
- noise scaling from G0 target measurements (238 ppm@30 Hz) would indicate ~26 ppm@2000 Hz for the Møller target, a 5 % increase to the counting statistical width of 77.3 ppm/pair
- the 2500 W Q_{weak} target is a critical precursor to the Møller target

 computational fluid dynamics (CFD) simulations are essential to the design of the Møller target components as well as any safety assessment

This is the highest power LH₂ target in the world

HAPPEX-II beam corrections

1 month runtime : random jitter dominates

position < 2nm angle < 0.25 nrad

Position feedback will likely be required to speed convergence ~ factor of 5

1st order beam corrections

Property	Sensitivity	precision	required helcity- correlation	Systematic contribution		
Charge Asymmetry	1 ppb / ppb	~1%	<10 ppb	~0.1 ppb		
energy	-1.4 ppb/ppb	~10%	<0.3 ppb	~0.05 ppb		
position (on target)	0.85 ppb/ nm	~10%	<0.5 nm	~0.05 ppb		
angle	8.5 ppb/nrad	~10%	<0.05 nrad	~0.05 ppb		

Insertable Half-wave plate

Image from HyperPhysics: http://hyperphysics.phy-astr.gsu.edu/Hbase/hph.html

IHWP flips sign of cathode analyzing power with respect to Pockels cell voltage, but also:

- all analyzing power with respect to Pockels cell, and
- all birefringence downstream of Pockels cell

Most beam asymmetries ARE NOT cancelled by the IHWP

Helicity Sequence

60Hz line noise must cancel to avoid conflating electronics noise with sensitivity to beam dynamics

Present scheme (30 Hz) automatically handles this, as each window is ~2 60Hz cycles long.

Best Solution: form pulse-pair groups to combine high-frequency noise suppression with 60 Hz line noise averaging

Example: at 240 Hz reversal, 4 windows completes a 60 Hz cycle.

Option 1: Choose 2 pairs, force complementary two pairs to follow			 					1
Analyze each "macropulse" of 8 windows together	any line noise effect here		here	will cancel here				
Option 2: Choose 1 pair followed by the same pair, every time.					1 1 1			
Analyze each "macropulse" of 4 windows together	line	noise here	cancel	s here	2	•		 -

Potential drawback is additional sensitivity to low frequency electronics noise

Signal Path

Current signals from the detector are first converted to large voltage signals using nearby, low-noise preamplifiers. The amplified signals are then sent outside the hall to precision digital integrators.

Low-Noise Electronics

Our TRIUMF collaborators originally developed low-noise electronics for their own parity program. They have built custom versions for the Qweak experiment.

The same or similar electronics would be used in this experiment.

Slow Helicity Reversal

"slow" helicity reversals are an important component of a comprehensive strategy to control HCBA SLAC E158 used an energy change to create a g-2 spin flip into End Station A

Why use slow reversal:

- Comparison to two data sets rules out gross problems, at the level of ~4 σ of final error bars

• Addition of two data sets implies cancellation of subtle problems (at least those susceptible to cancellation under the reversal)

Why use more than one:

• Effectiveness relies on flipping helicity without changing systematic effect... you need the right flip for the specific possible systematic effect

Slow Helicity Reversal

"slow" helicity reversals are an important component of a comprehensive strategy to control HCBA SLAC E158 used an energy change to create a g-2 spin flip into End Station A

Why use slow reversal:

- Comparison to two data sets rules out gross problems, at the level of ~4 σ of final error bars
- Addition of two data sets implies cancellation of subtle problems (at least those susceptible to cancellation under the reversal)

Why use more than one:

• Effectiveness relies on flipping helicity without changing systematic effect... you need the right flip for the specific possible systematic effect

g-2 and Injector Spin Manipulation

g-2 spin rotation is available with 100 MeV energy shift

Near ideal cancellation for 1st and higher order beam systematics... but machine tuning requirements mean long time scale for reversal

Injector Spin Rotation

Wein Spin Rotator

• Crossed E/B fields intrinsically focus the beam. 180° spin flip from Wein will <u>not</u> perserve the beam properties!

• Solution: incorporate Wein with solenoids, and accomplish spin flip with +/-90 degree solenoid rotation. Solenoids focus as B², so this minimally changes beam transport properties.

Wein upgrade project now underway at JLab to support the 2010 experiments

Two Wien rotations, optimized once then held constant, with +/-90 degree solenoid rotation

Polarimetry

Need major effort to establish unimpeachable credibility for 0.4% polarimetry = two separate measurements, with separate techniques, which can be cross-checked.

Compton Polarimetry

For scattered electrons in chicane: two Points of well-defined energy!

- Asymmetry zero crossing
- Compton Edge

Integrate between to minimize error on analyzing power!

"independent" Photon analysis also normalizable at ~0.5%

High Precision Compton

At high energies, SLD achieved 0.5%. Why do we think we can do better?

- SLD polarimeter near interaction region background heavy
 - No photon calorimeter for production
- Hall A has "counting" mode (CW)
 - Efficiency studies
 - Tagged photon beam
- Greater electron detector resolution

So why haven't we done better before?

- Small asymmetries
 - = long time to precision
 - = cross-checks are difficult
- No one tried zero-crossing technique (zero crossing gets hard near the beam)
- photon calorimetry gets tricky at small E_{γ}

High Precision Compton

At high energies, SLD achieved 0.5%. Why do we think we can do better?

- SLD polarimeter near interaction region background heavy
 - No photon calorimeter for production
- Hall A has "counting" mode (CW)
 - Efficiency studies
 - Tagged photon beam
- Greater electron detector resolution

Its a major effort and a full time job, but there is no obvious fundamental show-stopper

So why haven't we done better before?

- Small asymmetries
 - = long time to precision
 - = cross-checks are difficult
- No one tried zero-crossing technique (zero crossing gets hard near the beam)
- photon calorimetry gets tricky at small E_{γ}

Atomic Hydrogen For Moller Target

Moller polarimetry from polarized atomic hydrogen gas, stored in an ultra-cold magnetic trap

- 100% electron polarization
- tiny error on polarization
- thin target (sufficient rates but no dead time)
- Non-invasive
- high beam currents allowed
- no Levchuk effect
- E. Chudakov and V. Luppov, IEEE Transactions on Nuclear Science, v 51, n 4, Aug. 2004, 1533-40

application to $\sin^2 \hat{\theta}_W(\mu)$

 rigorous (same spectral and kernel functions) once a set of quark masses have been accepted.

• $\sin^2 \hat{\theta}_W(0)$ important input for low energy observables, like APV, EI58, Qweak, I2 GeV Møller, ...

source	uncertainty
s quarks	0.00005
OZI rule	0.00003
isospin	0.00001
non-param.	0.00006
data/OPE	0.00003
α_s	0.00004
m_c, m_b	0.00004
sub-total	0.00009
$\sin^2 {\hat heta}_W(M_Z)$	0.00015
TOTAL	0.00016

Future improvements

- s quarks: currently very conservative. In future use ⊤ spectral functions?
 0.00005→0.00003
- e+e- data already improved, and will continue to improve: $0.00003 \rightarrow 0.00002$
- strong coupling will incrementally improve in the future: 0.00004→0.00002
- sum rule error on charm quark mass currently inflated; expect 0.00004→0.00003
- in total: $\pm 0.00009 \rightarrow \pm 0.00006$

Atomic Parity Violation

•6S → 7S transition in ¹³³Cs is forbidden within QED
•Parity Violation introduces small opposite parity admixtures
•Induce an E1 Stark transition, measure E1-PV interference
•5 sign reversals to isolate APV signal and suppress systematics
•Signal is ~ 6 ppm, measured to 40 ppb

January 14, 2010

Physics Motivation & Experimental Strategy