Study on the Two-Photon Transition from ψ(2S) to J/ψ at BESIII 吕 晓睿 Xiao-Rui Lu

(E-mail: xiaorui@gucas.ac.cn)

Graduate University of Chinese Academy of Sciences (GUCAS)

(on behalf of BESIII Collaboration)

List of Contents:

- Introduction
- BEPCII and BESIII Experiment
- Data Analysis
- Systematic Studies on the Enhancement
- Summary

Why Charmonium Insteresting: onia states

Two-photon transition from $\psi(2S)$ to J/ψ

On experimental side:

- delicate measurement
- analogous process to positronium and hydrogen two-photon transition
- CLEO reported Upsilon(3S)→rrUpsilon(2S)
- escaped from experimental measurement

On theoretical side:

- order α^2 QED transition between two hadrons
- similar process has been studied in heavy-light quark system
- improve understanding of heavy quarkonium characters such as spectrum, decay et al, and the strong interaction
- possibility of testing the hadron-loop effect 2010-07-28 Hadron2010, Beijing

Naive Theoretical Pictures

Potential model :

- discrete part: double E-1 transition via discrete *x_{CJ}* (nP) (n=1,2) states (virtual and real parts). (including main source of the background) (*well described x_{CJ} states*)
- relativistic correction:

relatively higher order v^2 operators corrections

Potential model + couple channel:

 besides discrete contribution, the hadron-loop effect also may play an important role.

Theoretical study is on going. (Z.G. He et al) 2010-07-28 Hadron2010, Beijing

BEPCII and **BESIII**

world-solo charm-factory

BEPCII:

- Beam energy: 1.0 ~ 2.3 GeV
- Luminosity: 1×10^{33} cm⁻²s⁻¹
- Optimum energy: 1.89 GeV

BESIII Spectrometer:

- MDC: $\sigma(p_T)/p_T \sim 0.5\%$ @ 1GeV dE/dx_{reso} < 6%
- TOF: 80 ps (for bhabha, barrel)
- EMC: $\sigma(E)/E \sim 2.5\% \times \sqrt{E}$
- MUC: 8~9 layers RPC $\delta R\Phi$ =1.4 cm~1.7 cm
- July 20, 2008: first e⁺e⁻ collision event in BESIII
- April 14, 2009: took ~100M $\psi(2S)$ events (~40 days)
- **May 29, 2009:** took ~41 pb⁻¹ continuum data @3.65GeV

more in Prof. X.-Y. Shen's morning talk

5

MDC Tracking

- 7000 Signal wires: 25 µm gold-plated tungsten
- 22000 Field wires: 110 µm Al
- Gas: He + C_3H_8 (60/40)

P

Precise Photon Measurement

2010-07-28

Data Samples at BESIII

Until June 2010:

Туре	BES-III	BESII	CLEO-c
	(×10 ⁶)	(×10 ⁶)	(×10 ⁶)
J/ ψ	230	58	-
ψ (2S)	108	14	27
DDbar	6.58(0.98)fb ⁻¹)	0.2(0.03fb ⁻¹)	5.4(0.8fb ⁻¹)
DsDs	DsDs -		Scan
DsDs* -		-	0.55(0.6fb ⁻¹)

And continues ...

the world largest resonance-produced Charmonium data

- → study the Charmonium-related physics:
 - ✓ Spectroscopy and decays
 - ✓ New hidden charm

2010-07-28

Hadron2010, Beijing

Dataset and Selection Criteria

Dataset:

- 41 pb⁻¹ continuum data @3.65GeV in 2009

Data Selection:

- At most 3 good photon candidates
 - EMC energy threshold: E>0.025GeV(barrel), E>0.050GeV(Endcap)
 - EMC TDC time window (0, 14)energy less than 0.9GeV
 - nearest angle to charged tracks: $d_{angle} > 10^{\circ}$

Only one good-lepton-pair candidate

- closest approach to interaction point:
 less than 1cm in x-y plane and less than 10cm in z-axis
- energy deposit in EMC: $E_{deposit}/P < 0.6 \text{ (muon)}, E_{deposit}/P > 0.7 \text{(electron)}$
- lepton momentum: 0.8 GeV/c < P < 2.0 GeV/c
- Only the $\gamma\gamma ll$ combination with least χ^2 of 4-momentum-constrain kinematic fit will be kept: $\chi^2 < 60$

Hadron2010, Beijing

$$\psi(2S) \to \gamma \gamma J / \psi, J / \psi \to ee(\mu \mu)$$

Dataset and Selection Criteria

Dataset:

- \Rightarrow ~160pb⁻¹ data taken @3.686GeV in 2009, which was estimated to contain 106 ± 4 million $\psi(2S)$ decays

Data Selection:

- At most 3 good photon candidates
 - EMC energy threshold: E>0.025GeV(barrel), E>0.050GeV(Endcap)
 - EMC TDC time window (0, 14)
 - nearest angle to charged tracks: $d_{angle} > 10^{\circ}$

Only one good-lepton-pair candidate

- closest approach to interaction point: less than 1cm in x-y plane and less than 10cm in z-axis
- energy deposit in EMC: $E_{deposit}/P < 0.6 \text{ (muon)}, E_{deposit}/P > 0.7 \text{(electron)}$
- lepton momentum: 0.8 GeV/c < P < 2.0 GeV/c
- Only the $\gamma\gamma ll$ combination with least χ^2 of 4-momentum-constrain kinematic fit will be kept: $\chi^2 < 60$

$$\psi(2S) \to \gamma \gamma J / \psi, J / \psi \to ee(\mu \mu)$$

Photons

Scattering Plot: $M_{\gamma\gamma}$ VS $RM_{\gamma2}$

$RM_{\gamma 2}$: Recoil Mass of lower energy photon γ_2

Projection Plots on $M_{\gamma\gamma}$ and $RM_{\gamma2}$

consistent data/MC line-shapes
 good MC description of the tails of χ_{CJ}/π⁰/η

J/ψ Momentum inside Box

3.56 3.54 3.52 3.52

3.48

Dilepton Invariant Mass

understood backgrounds:

- QCD background from psi(2S) decay
- QED background from continuum data

significant enhancement around J/ψ peak

3.56 3.54 3.52

3.5 3.48 3.46 3.44

Background Components

estimated with MC Simulation and continuum data

- ✓ relative branching fractions based on PDG
- ✓ take ψ(2S) decay bkg. shape and magnitude as the main background description

Signal Estimation

unbinned maximum likelihood fit with composition of three PDFs:

- **signal** (**red**): shape from phase-space-like MC simulation
- $\psi(2S)$ bkg.(blue): shape and magnitude from exclusive MC simulation
- other bkg.(green): 1st-order polynominal

Significance Estimation

significance: 12.50

significance: 14.30

$\pi^0\pi^0 J/\psi$ Background Validation

simple fit: two Guassian plus 1st-order polynominal *assuming right bump comes from* $\pi^0\pi^0 J/\psi$ *process*

2010-07-28

Hadron2010, Beijing

Preliminary Numerical Results and Systematic Uncertainties

	<i>ee</i> channel	<i>uu</i> channel
signals	495.8 ± 37.9	615.9 ± 40.9
efficiency	$(7.44 \pm 0.02)\%$	$(9.92 \pm 0.02)\%$
significance	12.5σ	14.3σ
$BR(\psi(2S) \rightarrow \gamma \gamma J/\psi)$	$(1.06 \pm 0.08)) \times 10^{-3}$	$(0.99 \pm 0.07)) \times 10^{-3}$

sources of systematic uncertainties

statistically consistent

- lepton tracking
- photon detection
- photon number cut
- kinematic fit
- BRs of $\psi(2S)$ decay bkg.
- χ_{CJ} decay width uncertainties

bkg. shape

- fitting range
- extrapolation from box region to full phase space
- signal MC simulation
- $\psi(2S)$ total number
- J/ψ decay BR
- interferences

Test Enhancement in Different Box Region

$RM_{\gamma_2}({ m GeV/c^2})$	$M_{\gamma\gamma}({ m GeV/c^2})$	$Br_{ee}~(\times 10^{-3})$	$Br_{\mu\mu} \; (\times 10^{-3})$
A (3.43, 3.49)	(0.15, 0.33)	1.17 ± 0.13	1.25 ± 0.11
B (3.43, 3.49)	(0.33, 0.51)	0.97 ± 0.10	0.79 ± 0.08
C (3.43, 3.46)	(0.15, 0.51)	0.97 ± 0.11	1.04 ± 0.08
D(3.46, 3.49)	(0.15, 0.51)	1.16 ± 0.12	0.98 ± 0.10

- existence of the enhancement is robust
- variation of the measurements in different regions:
 - statistical fluctuation
 - physics mechanism of signal process

• to be included in the systematic uncertainties 2010-07-28 Hadron2010, Beijing

Compilation of Preliminary Systematic Uncertainties

	systematic u	ncertainties (%)		
	$J/\psi \to ee$	$J/\psi \to \mu \mu$		
lepton tracking	-0.7	+1.0		
photon detection	± 1.0	± 1.0		
photon number cut	+3.8	± 1.0	, big sources	
4C KF	+1.1	+1.1		
relative branching fraction	$^{+11.3}_{-11.6}$	$^{+12.5}_{-12.8}$	\checkmark another important source	
χ_{cJ} decay width	$^{+7.4}_{-5.2}$	$^{+10.5}_{-4.2}$	physics mechanism MC	
χ_{cJ} inter-interferences	-4.7	-6.1	simulation of the signal	
background shape	± 0.1	± 0.1	process not included vet	
fitting range	$^{+0.9}_{-2.8}$	-5.1		
$\psi(2S)$ Total Number	$^{+7.9}_{-7.5}$	$^{+8.7}_{-8.4}$	✓ possible signal- χ_{CJ} -decay interference not included	
$Br(J/\psi \to ll)$	± 1.0	± 1.0		
total	+15.4	+18.6		
io ua	-16.7	-17.8		

Summary

Charmonium is an interesting topic to understand non-perturbative QCD

- **4** Thanks to the high-luminosity of BEPCII and highquality BESIII data, a significant enhancement of two-photon transition of ψ(2S) to J/ψ was observed for the first time in the world: significance>10σ
- The branching ratio was measured at BESIII with combination of two independent channels.

Preliminary result shows:

 $Br(\psi(2S) \to \gamma \gamma J/\psi) = (1.02 \pm 0.05 (\text{stat.})^{+0.19}_{-0.20} (\text{syst.})) \times 10^{-3}.$

Thank You! 谢谢!