Solid Instrumentation and GEM chambers Nilanga Liyanage

University of Virginia

SoLID Spectrometer

SoLID Spectrometer for SIDIS

Gas Electron Multiplier- GEM: technology

- Invented by Sauli in the nineties.
- Have been adapted for many applications since.
- Successfully used in COMPASS for a few years.

GEM: σ_x~70μm

GEM Research and Development

RD51 Collaboration for the Development of Micro-Pattern Gas E http://rd51-public.web.cern.ch/RD51%2DPublic/Welcome.html

GEM Readout

- Since we plan to cover large areas, need lots of channels: need multiplexing.
- Need fast readout
- •1/0 and analog ADC readout has been used in the past.
- Analog ADC readout is more useful:
 - Charge weighted centroid gives better position accuracy.
 - Charge correlation between x and y readout (at ~ 30 - 50% level) can help resolve multi-hit ambiguity.

GEM Readout

Example: APV-25 multiplexing analog amplifier chip

Fast, Pipelined readout: read at 40 MHz
128 Channels: mutiplexed into a single signal train going to and ADC chan.

Ideal for high luminosity applications requiring high resolution: like SOLID

- Can tolerate rates up to 50 kHz/mm² or more: SOLID needs up to ~ 5 kHz/mm².
- Achieved resolutions ~ 60 70 μm
- Radiation hardy: no effect after many years of running at COMPASS
- No chamber aging observed up to ~ 7 mC/mm²: this is about 10,000 hours of running for SOLID: $$\times10^3$$

Main Challenge: large area

- COMPASS GEM chambers only 30 cm x 30 cm; there were total 22 chambers, total area ~ 2 m².
- Requirements for SOLID more than an order of magnitude larger.

Plane	Z (cm)	R _I (cm)	R _O (cm)	Total Area (m²)	circumfe Inner	rence (cm) outer
4	120	39.0	87.2	1.9	245	548
5	150	48.7	109.0	3.0	306	684
6	190	61.7	138.0	4.8	388	867
7	290	94.2	210.7	11.2	592	1323
8	310	100.7	225.2	12.7	633	1414
total:				33.6		

This is the bare minimum: high rates may require multiple chambers at the same location.

- Disk area larger than available GEM foil size (currently ~45 \times 45 cm²); need larger foil and segmentation.
- Large total area: most current GEM foil production at CERN shop: can they handle this volume ? Need new foil manufacturing

Several Large Area GEM projects in production or prototyped

•STAR Front GEM Tracker (MIT, BNL, Yale, Indiana, ANL, Kentucky)

- 6 triple-GEM disks around beam
- IR~10.5 cm, OR~39 cm, four 90° wedges, area ~ 0.14 m² each
 total GEM area ~ 3.3 m²

- Successfully worked with a private company (Tech Etch. Inc, in Massachusetts) to produce all GEM foils
- Readout boards were also locally produced using laser etching (CERN ones are chemically etched)

Several Large Area GEM projects in production or prototyped

- •TOTEM T1 upgrade: 6 disks, 85 cm radius.
- Large GEM chambers, each one $\sim 0.2 \text{ m}^2$.
- 2x5 chambers make a disk.
- Total GEM area ~12 m²

Major recent development at CERN PCB shop towards large GEM foils

- Base material only ~ 45 cm wide roll.
- Used a double mask technique for etching: hard to the two masks accurately: Max area limited to ~ 45 cm x 45 cm previously.

Single Mask technique allows to make GEM foils as large as 200 cm \times 45 cm

Major recent development towards large GEM foils

- Splicing GEM foils together: seam is only 2 mm wide
- Performance of the rest of the GEM foil unaffected

TOTEM T1 prototype chamber made with single mask GEM foils spliced together (33 cm x 66 cm)

- Base material up to 51.4 cm wide now available
- CERN plans to buy equipment capable of producing 200 cm × 50 cm GEM foil.

This combined with Splicing: 200 cm x 100 cm GEM foil may be possible in the next two years

M. Villa, et al., Nucl. Instr. and Meth. A (2010), doi:10.1016/j.nima.2010.06.312 M. Alfonsi et al. / Nuclear Instruments and Methods in Physics Research A 617 (2010)

Several Large Area GEM projects in production or prototyped

- PANDA at FAIR (Darmstadt, Germany)
 - 3 GEM stations with radii 45, 50 and 70 cm.
 - Each station: 2 half rings: need foils up to ~ 140 cm x 70 cm.

• Large GEM chamber development for Digital Hadron Calorimetry (Andy White, U. of Texas, Arlington)

- A 33 cm x 100 cm prototype currently under production
- Plans to build 15 such chambers by end of 2011, to put together five 1 m x 1 m GEM stations.

New SBS Spectrometer @ JLab

- High Luminosity: 10³⁸ /cm²/s
- Support high background:
 500 kHz/cm² (low energy photons mainly)
- Forward angle
- Large acceptance
- Good angular and momentum resolutions:
 0.2 mrad, 0.5% @ 4-8 GeV/c
- Flexibility: use the same detectors in different experimental setup

SBS Tracker Chambers configuration

- ✓ Modules are composed to form larger chambers with different sizes
- ✓ Electronics along the borders and behind the frame (at 90°) – cyan and blue in drawing
- Aluminum support frame around the chamber (cyan in drawing); dedicated to each chamber configuration

44 Collaborators from 13 Institutions

SBS Tracker Chambers configuration

Tracker	Area (cm²)	Number of Chambers	Readout	Pitch (mm)	Modules/ Chamber	Total Modules	Total Readout Channels
FT	40x150	6	2D	0.4	1×3	18	49000
			4(x/y)				+
			2(u/v)				13500
ST	50x200	4 + 4	2D	4×0.4	1×5	20+20	13600
+			2(x/y)				+
TT			2(u/v)				13600
CD	80x300	2	1D	1.0	2×6	24	12000
			у+у				

Total chs. 101700

Total area ~ 16.5 m^2

Cost estimate ~\$ 2.7 M

Key to Segmentation: making dead areas as narrow as possible

SBS GEM chamber prototyping

- •Prototype GEM tracker consisting of five 10 cm x 10 cm chambers built.
- Already tested in high rate conditions during hall A PREX experiment. Data being analyzed now
- More extensive test with APV-25 electronics and under high background rates planed for this Autumn.

•A 40 cm x 40 cm prototype and APV-25 electronics under construction at INFN.

Topics to study

- Tracking under high rates
- Response to low energy photons
- Readout plane size limitations (noise pickup, capacitance etc.)
- Combining readout strips

Expect to start production early next year.

Jefferson lab prototype GEM chamber test during PREX experiment

- Good correlation between tracks projected from VDC and GEM tracks.
- Preliminary resolution (from residuals) ~ 60 microns.

strip pitch is 400 microns

- Build a small Prototype and play with it: cost is ~ \$ 2500, CERN detector development group has components (GEM and readout foil) for sale http://gdd.web.cern.ch/GDD/
- Join RD-51: annual contribution to the research fund \$ 2000 (\$3000 ?)

Summary

- GEM technology:
 - powerful high resolution and high rates
 - radiation hardy
 - relatively low cost
 - becoming mature
- SOLID GEM chambers will be the largest in the world.
- Will be challenging but possible.

Solenoid tracking

• Nominally planes 4-8 instrumented from 18-36 degrees

STAR FGT (MIT, BNL, Yale, Indiana, ANL, Kentucky)

A pretty good place to start:

- 6 triple-GEM planes, disks around beam
- ID~7cm, OD~40 cm, 4 90° wedges, area ~ 0.14 m² each

•total GEM area ~ 3.3 m²

Total budget (including ~ 20%) contingency: ~ \$ 2 M (material ~\$0.86 M, labor, including ~55% overhead, ~ \$1.1 M)

STAR FGT (MIT, BNL, Yale, Indiana, ANL, Kentucky)

About 42 k channels:

cost for FEE and DAQ per chan.: ~\$ 16.50

parts: ~\$ 4.50

labor: ~\$ 7.50

overhead: ~\$ 4.50

APV-25 CHIP

Fast, Pipelined readout

128 Channels

Biggest Challenge: HUGE chamber area

• 100 cm x 40 cm foil may be possible in the near future:

•R & D at CERN, assumed for large chambers for PANDA at FAIR , TOTEM T1 upgrade at CERN and ILC.

- Planes 4-6 should be possible with azimuthal segmentation: also needs radial segmentation for planes 7 + 8.
- •May need 3 way readout to identify hits in high rates: have assumed only 2-way here: need a detailed simulation to study.
- Drift chambers (or straws) to replace planes 7 + 8 ?

 ATLAS Straw tubes (4 mm dia. 60 cm long) tested well to over 10 kHz/mm²

PANDA at FAIR

Facility for Antiproton and Ion Research, Darmstadt, German

3 GEM stations

2 half rings with R = 45 / 57 / 70 cm

⇒ GEM foil size ~ 140 x 70 cm²

Hybrid readout structure

- Central region: R = 3 7 cm
- ⇒ 1 mm² pixels (~13000)
- Peripheral region: R = 7 45 cm
 radial+concentric strips (~4000)

• Assume largest dimension of GEM foil ~75 cm

Plane	Z	R _I (cm)	R _o (cm)	Total Area (m²)	inner circumfer ence	outer circumfer ence	Azimuthal segments	radial segments	chamber inner width	Number of chambers
4	120	39.0	87.2	1.9	245	548	12	1	20.4	12
5	150	48.7	109.0	3.0	306	684	12	1	25.5	12
6	190	61.7	138.0	4.8	388	867	12	1	24.2	12
7	290	94.2	210.7	11.2	592	1323	24	2	24.7	48
8	310	100.7	225.2	12.7	633	1414	24	2	26.4	48
total:				33.6						132

Triple-GEM = 100 m^2 foil: \$ 0.35 M

Each chamber: readout board (\$ 5k), frame (\$1.5k)

Supplies: \$ 0.1 M

Technician labor ~ 12 FTE: \$1 M

~300k channels, \$ 10 - 15 per chan.: \$ 3 - 4.5 M

Support structure, Integration not included.

rough cost

GEM foil	~100 m²	\$3500/m ²	0.35 M
readout boards	132	5000	0.66 M
chamber support frame	132	1500	0.20 M
FEE and DAQ	300 k	15	4.5 M
cables, power, etc			0.5 M
Gas system			0.1 M
Labor	12 FTE	80 k	1.0 M
support structure and integration			???
TOTAL:			~ 7.5 M
With 33% contingency			~10 M

GEM for only planes 4, 5 and 6: 1/3 of the total area - ~ \$ 2.5 M