

R&D and production of timing RPC

Outline:

- Introduction of timing RPC
- MRPC for RHIC STAR-TOF
- High rate MRPC for CBM-TOF
- MRPC mass production
- Conclusions

Wang Yi Department of Engineering Physics Tsinghua University

Introduction of timing RPC

The MULTIGAP Resistive Plate Chamber

Note 1: internal glass plates electrically floating - take and keep correct voltage by electrostatics and flow of electrons and ions produced in gas avalanches Note 2: resistive plates transparent to fast signals - induced signals on external electrodes is sum of signals from all gaps

Large area, high granularity Good time resolution<80ps High efficiency> 95% Low cost

ALICE, STAR, FOPI, HADES HARP, CBM and NICA-MPD

Four kinds of MRPC prototypes

• Used in HADEs-TOF

• Used in STAR-TOF

Used in STAR-MTD

Wang Yi, Tsinghua University

MRPCs used in hadron experiment

Detector	HARP	ALICE	STAR	FOPI	HADES
N_{gaps}	4	10	6	6	4
gap size [mm]	0.3	0.25	0.22	0.3	0.3
$gas[C_2F_4H_2/SF_6/C_4H_{10}]$	90/5/5	90/5/5	90/5/5	85/10/5	98.5/1/0.5
electric configuration	cat-an-cat	cat-an-cat	an-cat	cat-an-cat	cat-an-cat
cell size $[cm \times cm]$	22×10.6	2.5×3.7	6.3×3.1	90×0.34	60×2
detector size	$10 {\rm m}^2$	150 m^2	60 m^2	5 m^2	8 m^2
N _{channels}	368	160000	$\simeq 30000$	5000	$\simeq 2100$
HV/gap	3.0 kV	2.4 kV	2.35 kV	3.3 kV	3.2 kV
ε	99%	99.9%	95 - 97%	$97 \pm 3\%$	>95%
plateau length	300 V	2000 V	500 V	600 V	$\gtrsim 200 \text{ V}$
σ_T	-	$90 \mathrm{\ ps}$	120 ps	-	100 ps
σ_T (after slewing corr.)	150 ps	40 ps	$60 \mathrm{\ ps}$	$73 \pm 5 \text{ ps}$	$70 \mathrm{\ ps}$
cross-talk/neighbor	< 10%	-	-	-	< 0.5%
$3-\sigma$ tails	-	-	-	< 2%	6%
space resolution $[\rm cm^2]$	-	-	-	-	0.6×0.6
experiment rates	1 Hz/cm^2	$50 \ \mathrm{Hz/cm^2}$	$10 \ \mathrm{Hz/cm^2}$	$50 \ \mathrm{Hz/cm^2}$	$700~{ m Hz/cm^2}$
dark rate $[Hz/cm^2]$	< 0.1	-	< 0.3	< 1	2 - 3
rate capability $[Hz/cm^2]$	≤ 2000	≤ 1000	-	-	350
$\rho \ d \ [10^{12} \ \Omega \times \rm{cm}^2]$	10×0.105	- × 0.04	5×0.055	$- \times 0.15$	5×0.1
\bar{q}	-	2 pC	-	-	-
\bar{q}_{prompt}	-	-	-	-	0.7 pC
material budget (x/X_o)	-	-	_	-	12-24%
resistive material	float glass	float glass	float glass	float glass	float glass

Wang Yi, Tsinghua University

STAR Experiment

Requirement for STAR-TOF

Large acceptance TOF detector to dramatically extend STAR's scientific reach through enhanced PID.

120 Trays of MRPC modules to cover acceptance of the STAR TPC.

- The total resolution after all corrections must be less than 100 ps.
- The detector segmentation : the occupancy per channel is below 10-15%.
- The system must fit into the space for the present CTB system.
- The system must be able to operate at particle fluxes up to ${\sim}300$ Hz/cm^2

MRPC used in STAR barrel TOF

Long side view

Wang Yi, Tsinghua University

Glass: $\sim 4 \times 10^{12} \Omega.cm$ Carbon tape: 500k Ω/\Box Gas gap: $6 \times 0.22mm$ Working gas: 95% F134a+5% iso-butane Time resolution: <80ps Efficiency >90% Rates capability: <500Hz/cm² !

Time performance of MRPC-TOF

Operation condition			Time resolution (ps)					
			Start time	Overall	Stop time			
	200GeV	V d+Au	~85	~120	~85			
Run III	200Ge	eV p+p	~140	~160	~80			
	62GeV	Au+Au	~55	~105	~89			
Run IV	Run IV 200GeV	FF/RFF	~27	~74	~70			
Au+Au	Au+Au	HF	~20	~74	~71			
Dervil	200GeV Cu+Cu (TOT)		~50	~92	~75			
Run V 64GeV Cu+		+Cu (TOT)	~82	~125	~94			
Run VIII	200GeV d+Au		NA	NA	NA			
5 Trays 20	200GeV p	o+p (TOT)	~83	~112	~75			
Run IX 86 Trays	500GeV p	o+p (TOT)	~85	~117	~78			

Wang Yi, Tsinghua University

Wang Yi, Tsinghua University

Second workshop on hadron physics in China and opportunities with 12 GeV JLab , July 27-31, Tsinghua University, Beijing, china, 2010 10

FAIR-CBM TOF

- Full system time resolution $\sigma_{\rm T}$ ~ 80 ps
- Efficiency > 95 %
- Rate capability < 20 kHz/cm²
- Acceptable cross-talk and charge-sharing
- Pile-up < 5%
- Occupancy < 5 %
- Spatial resolution

CBM-TOF requirement

5	different	regions	were	defined,	with	5 di	fferent	cell	sizes:
---	-----------	---------	------	----------	------	------	---------	------	--------

→Pad region (1): 2.0 x 2.0 cm²

→Strip region (2): 2.0 x 12.5 cm²

→Strip region (3): 2.0 x 25.0 cm²

→Strip region (4): 2.0 x 50.0 cm²
 →Strip region (5): 2.0 x 100.0 cm²

TOTAL

Possible Solution:

- Timing RPC with low resistivity glass $\sim 10^{10} \Omega cm$
- Center: pad-readout
 - Outside: strip-readout

Timing RPC world map

Development of low resistive glass

Specifications:

Maximal dimension: $50 \text{ cm} \times 50 \text{ cm}$ Bulk resistivity: $^{10^{10}}\Omega$.cm Standard thickness: 0.5 mm-2mm Thickness uniformity: $\pm 0.02 \text{ mm}$ Dielectric constant: 10 Surface roughness: <10nm DC measurement: very stable

Thickness distribution

Performance test of glass

Prototype of high rate MRPC (pad-readout)

Colloidal graphite: 2M Ω/□ Gas gap: 10×0.25mm 10×0.22mm Glass: 0.78mm,1mm Resistivity: ~10¹⁰Ω.cm Working gas: 96% F134a+3% iso-butane+1%SF6

Cosmic ray test

Wang Yi, Tsinghua University

Cosmic ray test

1st neighboring pad: charge sharing + crosstalk 2st and 3st: only crosstalk <5%

Beam test for rate capability

Performance of high rate MRPC

Efficiency and time resolution as a function of high voltage at a rate of about 800Hz/cm²

When the particle flux increases every 5 kHz/cm^2 , the efficiency decreases by 1% and the time resolution deteriorates by 4 ps.

Prototype of high rate MRPC (strip-readout)

Colloidal graphite: 1M Ω/□ Gas gap: 10×0.25mm Glass: 0.78mm,1mm resistivity: ~10¹⁰Ω.cm Gas mixture: Freon/iso-butane/SF6 96.5%/3%/0.5%

Test Setup

Wang Yi, Tsinghua University

HV scan

Position Scan

Wang Yi, Tsinghua University

Crosstalk & charge sharing

Position resolution

- Using the tracking, we get the signal propagation velocity:
 ~ 61ps/cm
- Position resolution:

<5mm

Wang Yi, Tsinghua University

Structure of 1m-long counter

2.5cm

Seco

Gap 4mm

Readout strips: 2.5 cm x 1m

- Gaps between strips: 4 mm
- Gas gaps: 6 x 0.25 mm
- Outer glass: 1.1 mm
- Inner glass: 0.7 mm
- HV electrode: colloidal graphite ~5 M Ω / \Box
- Gas mixture: 90%/5%/5% ٠ Freon/iso-butane/SF6
- Gas flux: 50ml/min

Wang Yi, Tsinghua University

97cm 10p on hadron physics in China and opportunities with 12 GeV JLab, Jot Pipes, Tsinghua University, Beijing, china, 2010

27

Performance of 1m-long counter

This detector can be used in STAR-MTD and CBM-TOF.

MRPC calibration-Time resolution

Wang Yi, Tsinghua University

Spacial resolution

Wang Yi, Tsinghua University

STAR-MTD running results

The peak shows an enhancement of particle yield at the angle where the MTD is positioned. The ratio is about 2:1.

Wang Yi, Tsinghua University

MRPC Production Milestones (STAR MRPC)

	2006			2007				2008								
	1/2	3/4	5/6	7/8	9/10	11/12	1/2	3/4	5/6	7/8	9/10	11/12	1/2	3/4	5/6	7/8
Prod Start		I														
132 MRPCs																
768 MRPCs		_														
1856 MRPCs		_														
2944 MRPCs		_														
4032 MRPCs																•

MRPC production was finished in September of 2008.

In Tsinghua:

3100 MRPC have been produced;

2951 Modules passed QA, yield >95%;

2840 modules shipped to UT Austin.

Wang Yi, Tsinghua University

MRPC mechanical specifications

	Nominal	Minimum	Maximum
Length	212mm	211.5mm	212.5mm
Width	94mm	93.5mm	94.5mm
Thickness between two PCBs	9.7mm	9.4mm	10mm
HV lead length	18cm	17.7cm	18.5cm
Signal lead length	22.5cm	22cm	23cm

Testing conditions	Specifications
Working gas: 95% F134A+5% iso-butane	Leakage current: < 2 nA
HV: 14kV	Noise rate: <50 Hz for each channel
FEE threshold: 80mV	Avalanche ratio: >80% of ADC spectrum
	Efficiency : >90%
	Timing resolution of 90% channels < 120 ps
	Crosstalk of two pads: <0.4

MRPC workshop @ Tsinghua

Wang Yi, Tsinghua University

Second workshop on hadron physic July 27-31, Tsinghua University, Beijing, china, 2010

Production tools

Wang Yi, Tsinghua University

Production of graphite electrodes

Procedures of construction and QC

6S criterion, ISO 9000 and 14000 standards are also carried out in MRPC production.

nities with 12 GeV JLab ,

QC setup- cosmic ray testing system

Time resolution testing system QC capability: 10 modules/day

QC - Performance statistics Time resolution of each pad

Wang Yi, Tsinghua University

40

Wang Yi, Tsinghua University

July 27-31, Tsinghua University, Beijing, china, 2010

The Time of Flight System in Year 2009

Wang Yi, Tsinghua University

Conclusions

- Development of 6-gap MRPC for STAR-TOF, time resolution<70ps, efficiency>95%
- 3100 MRPCs were assembled for STAR-TOF, yield>95%
- Development of low resistive glass with resistivity ~ $10^{10}\Omega$ cm
- Development of pad- and strip- readout high rate MRPCs, rate capability>20kHz/cm², time resolution<80ps
- Application in Jefferson lab 12GeV project and NICA-MPD,...

Thank You!