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Outline

• Physics potential

– Standard Model Test

– Charge Symmetry Violation (CSV)

– Higher Twist

– d/u for the Proton

• New Solenoidal Spectrometer (SoLID)

• Polarimetry
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•The couplings gT depend on electroweak physics as well as on the   

weak vector and axial-vector hadronic current 

•For PVDIS, both new physics at high energy scales as well as 

interesting features of hadronic structure come into play

•A program with a broad kinematic range can untangle the physics

(gA
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T + gV
egA
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PV Asymmetries: Any Target

and Any Scattering Angle

Forward Backward
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PVDIS: Electron-Quark Scattering

C1u and C1d will be determined to high precision by Qweak, APV Cs

C2u and C2d are small and poorly known: 

one combination can be accessed in PV DIS
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Moller PV is insensitive to the Cij

Consider
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f1 f2  f1 f2or gij’s for all f1f2

combinations and L,R 

combinations

Many new physics models give rise to neutral ‘contact’ (4-Fermi) interactions:

Heavy Z’s, compositeness, extra dimensions…
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New combination of: 

Vector quark couplings C1q

Also axial quark couplings C2q

Deep Inelastic Scattering

iii fff 

For an isoscalar target like 2H, structure 

functions largely cancel in the ratio at high x
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At high x, APV becomes independent of x, W, 

with well-defined SM prediction for Q2 and y

Sensitive to new physics at the TeV scale
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contain quark 

distribution functions 
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PVDIS: Only way to  measure C2q
Unknown radiative corrections

for coherent processes
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Sensitivity: C1 and C2 Plots

Cs

PVDIS

Qweak PVDIS

World’s data

Precision Data

6 GeV
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Search for CSV in PV DIS

Sensitivity will be further enhanced if u+d falls off more rapidly than u-d as x  1

•measure or constrain higher twist effects at x ~ 0.5-0.6

•precision measurement of APV at x → 0.8 to search for CSV

Strategy:

•u-d mass difference
•electromagnetic effects

•Direct observation of parton-level CSV would be very exciting!

•Important implications for high energy collider pdfs

•Could explain significant portion of the NuTeV anomaly

up (x)  dn (x)?

d p (x)  un (x)?

For APV in electron-2H DIS: 
du

du

A

A

PV

PV
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u(x)  up (x) dn (x)

d(x)  d p (x) un (x)
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Sensitivity with PVDIS

RCSV 
APV x 
APV x 

 0.28
u x d x 

u x  d x 
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Need Full Phenomenology
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There are 5

relevant structure

functions

BIG Small; use ν data

(Higher twist workshop

at Madison, Wisconsin)
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Why HT in PVDIS is Special
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Bjorken, 

PRD 18, 3239 (78)

Wolfenstein,

NPB146, 477 (78)

Zero in QPM

Higher-Twist valance

quark-quark correlations

HT in F2 is dominated 

by quark-gluon correlations

Vector-hadronic piece only

Next use CVC 

(deuteron only)

Start with Lorentz Invariance
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Quark-Quark vs Quark-Gluon

Parton Model

or

leading twist

Di-quarks

Quark-gluon

diagram

What is a true

quark-gluon

operator?

Quark-gluon operators

correspond to 

transverse momentum

QCD equations

of motion

u

u d

u

Might be computed

on the lattice

PVDIS is the 

only known way

to isolate

quark-quark

correlations
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Statistical Errors (%) vs Kinematics

4 months at 11 GeV

2 months at 6.6 GeV

Error bar σA/A (%)

shown at center of bins

in Q2, x

Strategy: sub-1% precision over broad kinematic range for sensitive 

Standard Model test and detailed study of hadronic structure contributions
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Coherent Program of PVDIS Study

• Measure AD in NARROW bins of  x, Q2 with 0.5% precision

• Cover broad Q2 range for x in [0.3,0.6] to constrain HT

• Search for CSV with x dependence of  AD at high x

• Use x>0.4, high Q2, and  to measure a combination of  the Ciq’s

Strategy: requires precise kinematics and broad range

x y Q2

New Physics no yes no

CSV yes no no

Higher Twist yes no yes
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PVDIS on the Proton: d/u at High x

Deuteron analysis has large

nuclear corrections (Yellow)

APV for the proton has no 

such corrections

(complementary to BONUS)

The challenge is to get statistical and systematic errors ~ 2%
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3-month run
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CSV in Heavy Nuclei: EMC Effect

Additional 

possible

application of 

SoLID

Isovector-

vector mean

field.  (Cloet, 

Bentz,

and Thomas)

5%
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SoLID Spectrometer

Baffles
GEM’s

Gas Cerenkov

Shashlyk
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Layout of Moller and PVDIS
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Access to the Detectors

• End Cap rolls 

backward along 

the beam line on 

Hilman Rollers

• 342 metric tons 

for both end 

caps with baffles 

installed

• Must allow for 

5% rolling 

resistance
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Baffle geometry and support 
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Error Projections for Moller 

Polarimetry

Table from MOLLER director’s 

review by E. Chudakov
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Summary of Compton 

Uncertainties
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Error Budget in %

Statistics 0.3

Polarimetry 0.4

Q2 0.2

Radiative Corrections 0.3

Total 0.6
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Summary

• The physics is varied and exciting.

– Excellent sensitivity to C2u and C2d.

– Test CSV at quark level.

– Unique window on higher twists.

• We will build a novel apparatus (with many 

other possible applications, eg. SIDIS)
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n

n
 e2B / kT  1014

Atomic Hydrogen For Moller Target
Moller polarimetry from polarized atomic 

hydrogen gas, stored in an ultra-cold

magnetic trap

• Tiny error on polarization

• Thin target (sufficient rates but       

no dead time)

• 100% electron polarization

• Non-invasive

• High beam currents allowed

• No Levchuk effect

E. Chudakov and V. Luppov, IEEE Transactions on 

Nuclear Science, v 51, n 4, Aug. 2004, 1533-40

Brute force polarization

10 cm, ρ = 3x1015/cm3

in B = 7 T at T=300 mK
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High Precision Compton
At high energies, SLD achieved 0.5%.

Why do we think we can do better?  

•SLD polarimeter near interaction 

region - background heavy

•No photon calorimeter for production

•Hall A has “counting” mode (CW)

•Efficiency studies

•Tagged photon beam

• Greater electron detector resolution

So why haven’t we done 

better before?

Design 

(4.5GeV)

PREX
H-III

PV-DIS

11 GeV

Distance from primary beam [mm]

A
s
y
m

m
e

tr
y

• Small asymmetries 

= long time to precision 

= cross-checks are difficult

• Zero-crossing technique is new.  (zero 

crossing gets hard near the beam)

• Photon calorimetry is harder at small Eγ

Its a major effort, but there is no 

obvious fundamental show-

stopper
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Layout ofSpectrometer using 

CDF coil
• Coil mounting is well 

understood from CDF

–Designed to be 
supported by end

–Supports allow 
radial movement in 
both ends for 
thermal

–One end fixed 
axially

• Will need to check for 
decentering forces 
due to field asymmetry 
(Lorentz forces)


