The Jlab 12 GeV Upgrade

R. D. McKeown Jefferson Lab College of William and Mary

12 GeV Science Program

- The physical origins of quark confinement (GlueX, meson and baryon spectroscopy)
- The spin and flavor structure of the proton and neutron (PDF's, GPD's, TMD's...)
- The quark structure of nuclei
- Probe potential new physics through high precision tests of the Standard Model
- Defining the Science Program:
 - Four Reviews: Program Advisory Committees (PAC) 30, 32, 34, 35
 - 2006 through 2010
 - Results: 32 experiments approved ; 13 conditionally approved
 - PAC36 scheduled August 2010: continue rankings

Exciting slate of experiments for 4 Halls planned for initial five years of operation!

12 GeV Upgrade Project

Thomas Jefferson National Accelerator Facility R. McKeown – Hadron Workhop - Beijing 3

12 GeV Scientific Capabilities

Hall D – exploring origin of confinement by studying exotic mesons

Hall B – understanding nucleon structure via generalized parton distributions

Hall C – precision determination of valence quark properties in nucleons and nuclei

Hall A – short range correlations, form factors, hypernuclear physics, future new experiments (e.g. PV and Moller) R. McKeown – Hadron Workhop - Beijing

Flux tube excitation (and parallel quark spins) lead to exotic J^{PC}

Mass Predictions

Lowest mass expected to be $\pi_1(1^{-+})$ at 1.9±0.2 GeV

Jefferson Lab

Proton Spin Puzzle

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G(Q^2) + L_q(Q^2) + L_g(Q^2)$

[X. Ji, 1997]

D. de Florian et al., PRL 101 (2008) 072001

Thomas Jefferson National Accelerator Facility R. McKeown – Hadron Workhop - Beijing 7

Unified View of Nucleon Structure

Thomas Jefferson National Accelerator Facility

R. McKeown – Hadron Workhop - Beijing

8

Kinematics Coverage of the 12 GeV Upgrade

R. McKeown - Hadron Workhop - Beijing

Extraction of GPD's

R. McKeown – Hadron Workhop - Beijing

Quark Angular Momentum

$$J^{q}(t) = \int_{-1}^{+1} dx x [H^{q}(x,\xi,t) + E^{q}(x,\xi,t)]$$

→ Access to quark orbital angular momentum

DVCS beam asymmetry at 12 GeV

Thomas Jefferson National Accelerator Facility

R. McKeown - Hadron Workhop - Beijing

CLAS12

SIDIS Electroproduction of Pions

Jefferson Lab

A Solenoid Spectrometer for SIDIS

SIDIS SSAs depend on 4 variables (x, Q^2 , z and P_T) Large angular coverage and precision measurement of asymmetries in 4-D phase space are essential.

Hall A Transversity Projected Data

- Total 1400 bins in x, Q^2 , P_T and z for 11/8.8 GeV beam.
- z ranges from 0.3 ~ 0.7, only one z and Q² bin of 11/8.8 GeV is shown here. π^+ projections are shown, similar to the π^- .

High x spin dependent DIS

REQUIRES:

- High beam polarization
- High electron current
- High target polarization
- Large solid angle spectrometers

16

Hypernuclear Physics

Thomas Jefferson National Accelerator Facility

R. McKeown - Hadron Workhop - Beijing

Future PV Program

R. McKeown – Hadron Workhop - Beijing

12 GeV Upgrade Schedule

R. McKeown - Hadron Workhop - Beijing

12 GeV Construction

- Accelerator: Major Procurements (>\$500K) nearly complete
 - beam transport magnets ; helium refrigerator ; power supplies; etc...

Beam Transport Quadrupole Magnets (50 of 114 total) at JLab

Physics Equipment Construction

Hall B – PCAL Test Extrusions w/ Optical Fibers

Hall D – Forward Drift Chamber in Test Stand

Physics Equipment Construction

Hall C - Wire Stringing Jig for Drift Chamber

Civil Construction: Hall D Complex 2009-2010

Jlab 12 GeV Upgrade

An exciting scientific opportunity

- Explore the physical origins of quark confinement (GlueX)
- New access to the spin and flavor structure of the proton and neutron
- Reveal the quark/gluon structure of nuclei
- Probe potential new physics through high precision tests of the Standard Model

Strong User community involvement

- NSF MRI and NSERC funding to universities for detector elements
- Strong international collaborations
- 32 PAC-approved experiments

Accel-Civil-Physics scope leverages the existing facility

Construction is well underway !

Accelerator nearing completion on major procurements; hardware arriving
Detector assembly ramping up
Civil construction on trook

Civil construction on track

New Proposals and collaborations are welcome

