Multi-quark components in hadrons Bing-Song Zou Institute of High Energy Physics, CAS, Beijing Theoretical Physics Center for Science Facilities, CAS

Outline:

- 5-quark components in the proton
- New scheme for N*(1535) and its1/2⁻ nonet partners
- Evidence for the predicted $\Sigma^*(1/2^-)$
- 5-quark components in other baryons
- 4-quark components in mesons
- Conclusion

1. 5-quark components in the proton

Classical picture of the proton

Flavor asymmetry of light quarks in the nucleon sea

Deep Inelastic Scattering (DIS) + Drell-Yan (DY) process

→ d̄ - ū ~ 0.12 for a proton
 Garvey&Peng, Prog. Part. Nucl. Phys.47, 203 (2001)

Table 1. Values of the integral $\int_0^1 [\bar{d}(x) - \bar{u}(x)] dx$ determined from the DIS, semi-inclusive DIS, and Drell-Yan experiments.

Experiment	$\langle Q^2\rangle~({\rm GeV^2/c^2})$	$\int_0^1 [\bar{d}(x) - \bar{u}(x)] dx$
NMC/DIS	4.0	0.147 ± 0.039
HERMES/SIDIS	2.3	0.16 ± 0.03
FNAL E866/DY	54.0	0.118 ± 0.012

DIS Gottfried Sum Rule : assuming $\overline{\mathbf{d}} = \overline{\mathbf{u}}$

$$I_2^p - I_2^n = \int_0^1 [F_2^p(x, Q^2) - F_2^n(x, Q^2)] / x \, dx = \sum_i [(Q_i^p)^2 - (Q_i^n)^2] = 1/3.$$

$$\int_0^1 [F_2^p(x,Q^2) - F_2^n(x,Q^2)]/x \, dx = \frac{1}{3} + \frac{2}{3} \int_0^1 [\bar{u}(x,Q^2) - \bar{d}(x,Q^2)] dx.$$

 $\sigma_{DY}(p+d)/2\sigma_{DY}(p+p) \simeq (1+\bar{d}(x_2)/\bar{u}(x_2))/2.$

FIGURE 1. Left panel: Cross section ratios of p + d over 2(p+p) for Drell-Yan, J/Ψ , and Υ production from FNAL E866. Right panel: Comparison of E866 $d - \overline{u}$ data with calculations from various models [2].

The Drell-Yan Process

Two major theoretical schemes for $\overline{\mathbf{d}} - \overline{\mathbf{u}} \sim 0.12$

Meson cloud picture: Thomas, Speth, Henley, Meissner, Miller, Weise, Oset, Brodsky, Ma, ...

 $|\mathbf{p}\rangle \sim |\mathbf{uud}\rangle + \varepsilon_1 |\mathbf{n}(\mathbf{udd})\pi^+(\mathbf{du})\rangle$

 $+ \varepsilon_2 | \Delta^{++} (uuu) \pi^{-} (\overline{ud}) > + \varepsilon' | \Lambda (uds) K^{+} (\overline{su}) > \dots$

Penta-quark picture : Riska, Zou, Zhu, ... $|\mathbf{p} > \sim |\mathbf{uud} > + \varepsilon_1 | [\mathbf{ud}][\mathbf{ud}] \ \mathbf{d} > + \varepsilon' | [\mathbf{ud}][\mathbf{us}] \ \mathbf{s} > + \dots$

Detailed balance model : Zhang, Ma, Zou, Yang, Alberg, Henley

uud
$$\Leftrightarrow$$
 uudg \checkmark uudd \overline{d} 1/2
1 : 1 uudu \overline{u} 1/3

p = 0.168 (uud) + 0.168 (uudg) + 0.084 (uudd d) + 0.056 (uudu u) $+ 0.084 (uudgg) + ... <math>\overline{d} - \overline{u} \sim 0.124$ (uud+ng) 50% (uudd \overline{d} +ng) 22.4% (uudu \overline{u} +ng) 15.0%

Predictions for s / s asymmetry from two schemes :

	meson cloud	penta-quark
strange spin ∆s :	< 0	< 0
magnetic moment μ_{s} :	< 0	> 0
strange radium r _s :	< 0	> 0

Expt: $\Delta s = -0.05 \sim -0.1$ D. de Florian et al., PRD71 (2005) 094018

The strange magnetic moment μ_s and radii r_s from parity violating electron scattering

G0,HAPPEX/CEBAF, SAMPLE/MIT-Bates, A4/MAMI

HAPPEX/CEBAF, Phys.Rev.Lett. 96 (2006) 022003
G0/CEBAF, Phys.Rev.Lett. 95 (2005) 092001
A4/MAMI, Phys.Rev.Lett. 94 (2005) 152001
SAMPLE/MIT-Bates: Phys.Lett.B583 (2004) 79

Theory vs experiment for μ_s and r_s **Our results** 0.50.4

Zou&Riska, PRL95(2005)072001; Riska&Zou, PLB636 (2006) 265 An-Riska-Zou, PRC73 (2006) 035207

Experiment extraction of \mu_s and r_s wrong?

R.Young et al., PRL97 (2006) 102002 $\rightarrow \mu_{s} \sim 0$ S.Baunack et al.(A4), PRL102(2009)151803

With ~25% qqqqq components in the proton, the "spin crisis" and single spin asymmetry may also be naturally explained. An-Riska-Zou, PRC73 (2006) 035207; F.X.Wei, B.S.Zou, hep-ph/0807.2324

$$\Delta_{u} = 0.85 \pm 0.17 \qquad \Delta_{u} = \frac{4}{3} |A_{3q}|^{2}$$

$$\Delta_{d} = -(0.33 \sim 0.56) \qquad \Delta_{d} = -\frac{1}{3}(1 - P_{s\bar{s}})$$

$$\Delta L_{q} = \frac{4}{3}(P_{d\bar{d}} + P_{s\bar{s}})$$

We must go beyond the simple 3q models, meson cloud vs penta-quark not settled yet. 2. New scheme for N*(1535) and its1/2⁻ nonet partners

• Mass order reverse problem for the lowest excited baryons

uud (L=1) $\frac{1}{2}$ - ~ N*(1535)should be the lowestuud (n=1) $\frac{1}{2}$ + ~ N*(1440)uds (L=1) $\frac{1}{2}$ - ~ Λ *(1405)

harmonic oscillator $(2n + L + 3/2)h\omega$

• Strange decays of N*(1535) : PDG \rightarrow large $g_{N^*N\eta}$

 $J/\psi \rightarrow pN^* \rightarrow p(K\Lambda) / p(p\eta) \rightarrow large g_{N^*K\Lambda}$ Liu&Zou, PRL96 (2006) 042002; Geng,Oset,Zou&Doring, PRC79 (2009) 025203 $\gamma p \rightarrow p\eta' \& pp \rightarrow pp\eta' \rightarrow large g_{N^*N\eta'}$ M.Dugger et al., PRL96 (2006) 062001; Cao&Lee, PRC78(2008) 035207

 $\pi^- p \rightarrow n\phi \& pp \rightarrow pp\phi \& pn \rightarrow d\phi \rightarrow large g_{N^*N\phi}$ Xie, Zou & Chiang, PRC77(2008)015206; Cao, Xie, Zou & Xu, PRC80(2009)025203

Strange properties of N*(1535)

a) Assuming N_x to be purely N*(1535) : B.C. Liu, B.S. Zou, PRL96 (2006) 042002; PRL98 (2007) 039102

> From relative branching ratios of $J/\psi \rightarrow p \ N^* \rightarrow p \ (K^- \ \Lambda) / p \ (p\eta)$ $g_{N^*K\Lambda}/g_{N^*p\eta}/g_{N^*N\pi} \sim 2:2:1$

 b) N_x as dynamical generated with unitary chiral theory: N*(1535) + non-resonant part L.S.Geng, E.Oset, B.S. Zou, M.Doring, PRC79 (2009) 025203

 $g_{N*K\Lambda}/g_{N*p\eta}/g_{N*N\pi} \sim 1.2:2:1$

Phenomenology : Large $g_{N^*K\Lambda} \rightarrow large \ ss \ in \ N^*(1535)$ $\overline{s[su][ud]} \ or \ K\Lambda-K\Sigma \ state$

Evidence for large $g_{N^*K\Lambda}$ from $pp \rightarrow p K^+ \Lambda$

Total cross section and theoretical results with N*(1535), N*(1650), N*(1710), N*(1720) B.C.Liu, B.S.Zou, Phys. Rev. Lett. 96 (2006) 042002

Tsushima, Sibirtsev, Thomas, PRC59 (1999) 369, without including N*(1535)

FSI vs N*(1535) contribution in pp \rightarrow p K⁺ Λ

B.C.Liu & B.S.Zou, Phys. Rev. Lett. 98 (2007) 039102 (reply) A.Sibirtsev et al., Phys. Rev. Lett. 98 (2007) 039101 (comment)

Evidence for large $g_{N^*K\Lambda}$ from $\gamma p \rightarrow K^+ \Lambda$

B. Julia-Diaz, B. Saghai, T.-S.H. Lee, F. Tabakin, Phys. Rev. C 73, 055204 (2006)

Evidence for small $g_{N^*K\Sigma}$ from pp \rightarrow p K⁺ Λ /pp \rightarrow p K⁺ Σ^0

Fig. 3. The Λ/Σ^0 cross-section ratio as a function of the excess energy ϵ . The solid circles show the ratio obtained for the $pp \rightarrow K^+\Lambda p$ and $pp \rightarrow K^+\Sigma^0 p$ reactions at COSY [2]. Solid

A.Sibirtsev et al., EPJA29 (2006) 363

[2] P.Kowina et al., EPJA22 (2004) 293

Evidence for large $g_{N^*N\phi}$ from $\pi^-p \rightarrow n\phi$, $pp \rightarrow pp\phi \& pn \rightarrow d\phi$ Xie, Zou & Chiang, PRC77(2008)015206; Cao, Xie, Zou &Xu, PRC80(2009)025203

New Scheme for N*(1535) and its 1/2⁻ nonet partners

Zhang et al, hep-ph/0403210

- $N^{*}(1535) \sim uud (L=1) + \varepsilon [ud][us] s + ...$
- $N^{*}(1440) \sim uud (n=1) + \xi [ud][ud] d + ...$
- $\Lambda^{*}(1405) \sim uds (L=1) + \varepsilon [ud][su] u + ...$

N*(1535): [ud][us] \overline{s} → larger coupling to Nη, Nη', Nφ & KΛ, weaker to Nπ & KΣ, and heavier !

The breathing mode for the N*(1535)

The new scheme for the 1/2⁻ nonet predicts:

- **Λ*** [us][ds] s ~ 1575 MeV
- Σ^* [us][du] \overline{d} ~ 1360 MeV
- Ξ^* [us][ds] \overline{u} ~ 1520 MeV

Prediction of other unquenched models:

(1) **5-quark model** Helminen & Riska, NPA699(2002)624 $\Sigma^*(1/2^-) \sim \Lambda^*(1/2^-)$

(2) K Λ -K Σ dynamics Weise, Oset et al. broad non-resonant $\Sigma^*(1/2^-)$ structure Jido-Oset et al , NPA725(2003)181

Important to look for the $\Sigma^*(1/2^-)$ **around 1380 MeV !**

3. Evidence for the predicted $\Sigma^*(1/2^-)$

	$M_{\Sigma^{\star}(3/2)}$	$\Gamma_{\Sigma^{\star}(3/2)}$	$M_{\Sigma^*(1/2)}$	$\Gamma_{\Sigma^*(1/2)}$	$\chi^2/ndf({\rm Fig.1})$	$\chi^2/ndf({\rm Fig.2})$
Fit1	1385.3 ± 0.7	46.9 ± 2.5			68.5/54	10.1/9
Fit2	$1386.1\substack{+1.1 \\ -0.9}$	$34.9^{+5.1}_{-4.9}$	$1381.3^{+4.9}_{-8.3}$	$118.6\substack{+55.2\\-35.1}$	58.0/51	3.2/9

J.J.Wu, S.Dulat, B.S.Zou, PRD80 (2009) 017503

(a)

(b)

(c)

$$K^{-}p \to \Lambda^{*} \to \Sigma_{3/2}^{*-}\pi^{+} \to \Lambda\pi^{+}\pi^{-}$$

$$K^{-}p \to \Lambda^{*} \to \Sigma_{1/2}^{*-}\pi^{+} \to \Lambda\pi^{+}\pi^{-}$$

$$P_{K} \approx 0.4 \text{ GeV}$$

$$P_{K} \approx 0.4 \text{ GeV}$$

$$\sum_{k=1}^{20} \frac{1}{100} \frac{1}{$$

J.J.Wu, S.Dulat, B.S.Zou, Phys. Rev. C81 (2010) 045210

 $\Sigma^*(3/2^+)$ & $\Sigma^*(1/2^-) \rightarrow$ different Dalitz plots & mass spectra

Both are needed to reproduce the data !

Other evidence: failed to reproduce data with Σ *(1385)

LEPS, PRL102(2009)012501

Y. Oh, C. M. Ko, and K. Nakayama, PRC77(2008) 045204

P.Gao, J.J.Wu, B.S.Zou, Phys. Rev. C 81 (2010) 055203

 $J^{P}=1/2^{-}$ I=1 is needed besides $\Lambda^{*}(1405)$!

$$\frac{d\sigma(\pi^{+}\Sigma^{-})}{dM_{I}} \propto \frac{1}{2} |T^{(1)}|^{2} + \frac{1}{3} |T^{(0)}|^{2} + \frac{2}{\sqrt{6}} \operatorname{Re}(T^{(0)}T^{(1)*}) + O(T^{(2)})$$
$$\frac{d\sigma(\pi^{-}\Sigma^{+})}{dM_{I}} \propto \frac{1}{2} |T^{(1)}|^{2} + \frac{1}{3} |T^{(0)}|^{2} - \frac{2}{\sqrt{6}} \operatorname{Re}(T^{(0)}T^{(1)*}) + O(T^{(2)})$$
$$\frac{d\sigma(\pi^{0}\Sigma^{0})}{dM_{I}} \propto \frac{1}{3} |T^{(0)}|^{2} + O(T^{(2)})$$

J/ψ decay branching ratio * 10⁴ $p \Delta(1232)^+ 3/2+$ < 1 SU(3) breaking $\overline{\Sigma}^{-}\Sigma(1385)^{+}$ 3.1 ± 0.5 $\overline{\Xi}^{+} \Xi (1530)^{-}$ 5.9 ± 1.5 p N*(1535)+ 1/2- 10 ± 3 SU(3) allowed $\overline{\Sigma}^{-}\Sigma(1360)^{+}$? $\overline{\Xi}^{+}\Xi(1520)^{-}$?

It is very important to check whether under the $\Sigma(1385)$ and $\Xi(1520)$ peaks there are $1/2^-$ components ?

4. 5-quark components in other baryons

 Δ^{++*} (1620) ¹/₂ - The lowest excited uuu state with L=1 in classical 3q models

 $\pi^+ p \rightarrow \rho^+ p \& pp \rightarrow nK^+\Sigma^+ \rightarrow very large g_{\Delta^*N\rho}$ J.J.Xie, B.S.Zou, PLB649 (2007) 405

→ $\Delta^*(1620)^{1/2-}$ pN molecule ? 1705 MeV $\Sigma^*(1750)^{1/2-}$ K*N molecule ? 1820 MeV $\Xi^*(1950)^{1/2-?}$ K*A molecule ? 2010 MeV $\Omega^*(2160)^{1/2-?}$ K*E molecule ? 2215 MeV

 $1/2^{-}$ baryon decuplet ~ V_8B_8 molecules ?

Role of 5q in Δ and N*(1440) – see papers by Riska et al. Li,Riska, NPA766(2006)172; Juli & D áz,Riska, NPA780(2006)175

5. 4-quark components in mesons

 $D^*_{s0}(2317) \sim \underline{sc} (L=1) + [q s][qc] + DK + ...$ $D^*_{s1}(2460) \sim \underline{sc} (L=1) + D^*K + ...$ $X(3872) \sim \underline{cc} (L=1) + [q c][qc] + D^*D + ...$

Conclusion I

- Meson-cloud vs diquark cluster for $\overline{d} \overline{u} \sim 0.12$
- Predictions for the strangeness in the proton: meson cloud : $\Delta s < 0$, $\mu_s < 0$, $r_s < 0$ diquark cluster : $\Delta s < 0$, $\mu_s > 0$, $r_s > 0$
- qqqqq in S-state more favorable than qqq with L=1 !
 & qqqq in S-state more favorable than qq with L=1 !
 - $1/2^{-}$ baryon nonet ~ $\overline{q}q^2q^2$ state + ...

 0^+ meson octet ~ $\overline{q}^2 q^2$ state + ...

multiquark components are important for hadrons!

Conclusion II

- Quenched quark models and unquenched models give very distinctive predictions for $\Sigma^*(1/2^-)$;
- Possible existence of a Σ*(1/2⁻) around 1380 MeV: evidence needs confirmation ; relevant to Kp, Kpp interactions or bound states
- It should be checked by forthcoming experiments :

 $\begin{array}{ll} \mathrm{K}^{-} \mathrm{p} \rightarrow \pi \, \Sigma^{*}, \ \Sigma^{*} \rightarrow \Lambda \, \pi, \Sigma \pi & @ \ \mathrm{JPARC} \\ \gamma \, \mathrm{N} \rightarrow \mathrm{K}^{+} \, \Sigma^{*}, \ \Sigma^{*} \rightarrow \Lambda \, \pi, \Sigma \pi & @ \ \mathrm{JLab}, \ \mathrm{Spring-8, ELSA} \\ \psi \rightarrow \ \overline{\Sigma} \, \Sigma^{*}, \ \Sigma^{*} \rightarrow \Lambda \, \pi, \Sigma \pi & @ \ \mathrm{BESIII} \end{array}$