

Extraction of \mathcal{H} from DVCS at JLab

Preliminary analysis

Leading twist Selected data GV formalism Assumptions

Fitting strategies

Local fits Global fit

Results

ImH and ReH Discussion

Conclusions

Extraction of the Compton Form Factor ${\cal H}$ from recent DVCS measurements at JLab

H. MOUTARDE, for the CLAS group at Saclay

Irfu/SPhN, CEA-Saclay

Exclusive 2010 Workshop - 05 / 18 / 2010

Preliminary analysis

(日) (周) (三) (三)

 $\begin{array}{c} {\sf Extraction \ of} \\ {\cal H} \ {\sf from \ DVCS} \\ {\sf at \ JLab} \end{array}$

Preliminary analysis

Leading twist Selected data GV formalism Assumptions

Fitting strategies

Local fits Global fit

Results

ImH and ReH Discussion

Conclusions

DVCS described by 4 Compton Form Factors. Approximations : guark sector, leading twist and leading order.

• Example : GPD H

$$\mathcal{H} = \int_{-1}^{+1} dx \, H(x,\xi,t) \left(\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right)$$

 \bullet Integration yields real and imaginary parts to ${\cal H}$:

$$Re\mathcal{H} = \mathcal{P} \int_{-1}^{+1} dx \, H(x,\xi,t) \left(\frac{1}{\xi-x} - \frac{1}{\xi+x}\right)$$
$$Im\mathcal{H} = \pi \left(H(\xi,\xi,t) - H(-\xi,\xi,t)\right)$$

• Relation between *ImH* and *ReH* weakly constrained by dispersion relations. However see :

K. Kumericki and D. Müller, arXiv:0904.0458

G. Goldstein and S. Liuti,≡DIS2009 ℃

H. MOUTARDE (Irfu/SPhN, CEA-Saclay)

Exclusive 2010 Workshop - 05 / 18 / 2010

2 / 19

Extraction of ${\cal H}$ from DVCS at JLab

Preliminary analysis

Leading twist Selected data GV formalism Assumptions

Fitting strategies

Local fits Global fit

Results

ImH and ReH Discussion

Conclusions

Selected JLab data : recent DVCS measurements. Fine kinematic binning and large kinematic coverage.

 ${\sf Hall}\ {\sf A}\ :\ {\sf helicity}{\sf -dependent}\ {\sf and}\ {\sf independent}\ {\sf cross}\ {\sf sections}$

C. Muñoz Camacho et al., Phys. Rev. Lett. 97, 262002 (2006)

- 12 bins : 1 value of x_B , 3 values of Q^2 and 4 values of t.
- Each kinematic bin contains 24 ϕ -bins.
- Statistical uncertainties :
 - $\bullet\,$ helicity-dependent : at least 20 $\%\,$
 - \bullet helicity-independent : \simeq 5 %

Hall B : Beam Spin Asymmetries

- F.-X. Girod et al., Phys. Rev. Lett. 100, 162002 (2008)
 - 62 bins : 5 value of x_B , 4 values of Q^2 and 5 values of t.
 - Each kinematic bin contains (at most) 12 ϕ -bins.
 - $\bullet\,$ Statistical uncertainties : \simeq 25 %

 $\begin{array}{c} {\sf Extraction \ of} \\ {\cal H} \ {\sf from \ DVCS} \\ {\sf at \ JLab} \end{array}$

Preliminary analysis

Leading twist Selected data GV formalism Assumptions

Fitting strategies

Local fits Global fit

Results

ImH and ReH Discussion

Conclusions

Analytic $ep \rightarrow ep\gamma$ cross sections. Interference between Bethe-Heitler and VCS processes treated exactly.

Example : DVCS helicity-dependent cross section at twist 2

BKM formalism :

$$C_1 \sin \phi Im \left(\mathcal{H} + rac{x_B}{2 - x_B} \left(1 + rac{F_2}{F_1}
ight) \tilde{\mathcal{H}} - rac{t}{4M^2} rac{F_2}{F_1} \mathcal{E}
ight)$$

A.V. Belitsky, D. Mueller and A. Kirchner Nucl. Phys. **B629**, 323 (2002)

• GV formalism :

$$C_2 \sin \phi \ Im \Big(\mathcal{H} + \ c_{\mathcal{E}} \ \mathcal{E} + \ c_{\tilde{\mathcal{H}}} \ \tilde{\mathcal{H}} + \ c_{\tilde{\mathcal{E}}} \ \tilde{\mathcal{E}} \Big)$$

P.A.M. Guichon and M. Vanderhaeghen, unpublished

Extraction of \mathcal{H} from DVCS at JLab

Preliminary analysis

Leading twist Selected data GV formalism Assumptions

Fitting strategies

Local fits Global fit

Results

ImH and ReH Discussion

Conclusions

Example : DVCS helicity-dependent cross section at twist 2 BKM formalism : coefficients do not depend on Q²

Interference between Bethe-Heitler and VCS processes treated exactly.

$$C_1 \sin \phi \operatorname{Im} \left(\mathcal{H} + \frac{x_B}{2 - x_B} \left(1 + \frac{F_2}{F_1} \right) \tilde{\mathcal{H}} - \frac{t}{4M^2} \frac{F_2}{F_1} \mathcal{E} \right)$$

A.V. Belitsky, D. Mueller and A. Kirchner Nucl. Phys. **B629**, 323 (2002)

• GV formalism : coefficients depend on Q^2

Analytic $ep \rightarrow ep\gamma$ cross sections.

$$C_{2} \sin \phi \, Im \left(\mathcal{H} + \underbrace{c_{\mathcal{E}}}_{20 \%} \mathcal{E} + \underbrace{c_{\tilde{\mathcal{H}}}}_{20 \%} \tilde{\mathcal{H}} + \underbrace{c_{\tilde{\mathcal{E}}}}_{30 \%} \tilde{\mathcal{E}} \right)$$

P.A.M. Guichon and M. Vanderhaeghen, unpublished

Main assumptions.

Expectation : extraction of ${\cal H}$ with \geq 40 % total uncertainty.

Extraction of ${\cal H}$ from DVCS at JLab

Preliminary analysis

Leading twist Selected data GV formalism Assumptions

Fitting strategies

Local fits Global fit

Results

ImH and ReH Discussion

Conclusions

• Twist 2 accuracy

• Early Q^2 -scaling was observed in Hall A.

C. Muñoz Camacho et al.

Phys. Rev. Lett. 97, 262002 (2006)

- Similar recent result concerning a subset of JLab data.
 M. Guidal. arXiv:1003.0307
- Small higher twist contribution in Hermes data.

D. Zeiler et al., DIS2008

< ∃→

• *H*-dominance

- Dramatically decreases the number of degrees of freedom in the fits.
- Expectations : systematic error between 20 and 50 %.
- Systematic error \lesssim 25 % from direct test of hypothesis with VGG model.
- The most questionable assumption so far ?

Extraction of ${\cal H}$ from DVCS at JLab

Preliminary analysis

Leading twist Selected data GV formalism Assumptions

Fitting strategies

Local fits Global fit

Results

Im ${\cal H}$ and Re ${\cal H}$ Discussion

Conclusions

Local fits. Fits on each kinematic bin to twist 2 expressions.

- Keep bins with $\frac{|t|}{Q^2} < \frac{1}{2}$.
- Low model dependence (*H*-dominance, twist 2).
- But fits may still be underconstrained.
- Estimation of systematic errors caused by *H*-dominance hypothesis by fitting data with subdominant GPDs set to 0 or to their VGG value.

(日) (周) (三) (三)

Fit to a parametrization from the dual model.

Extraction of \mathcal{H} from DVCS at JLab

Preliminary analysis

Leading twist Selected data GV formalism Assumptions

Fitting strategies Local fits Global fit

2

Results

ImH and ReH Discussion

Conclusions

• DVCS cross sections depend on singlet combination H_+ :

$$H_+(x,\xi,t,Q^2) = H(x,\xi,t,Q^2) - H(-x,\xi,t,Q^2)$$

• Dual model parametrization of H_+ :

$$\sum_{n=0}^{\infty} \sum_{l=0}^{n+1} B_{nl}(t, Q^2) \theta\left(1 - \frac{x^2}{\xi^2}\right) \left(1 - \frac{x^2}{\xi^2}\right) C_{2n+1}^{\frac{3}{2}} \left(\frac{x}{\xi}\right) P_{2l}\left(\frac{1}{\xi}\right)$$

Fit to a parametrization from the dual model.

Extraction of \mathcal{H} from DVCS at JLab

Preliminary analysis

Leading twist Selected data GV formalism Assumptions

Fitting strategies Local fits Global fit

Results

ImH and ReH Discussion

Conclusions

• DVCS cross sections depend on singlet combination H_+ :

$$H_+(x,\xi,t,Q^2) = H(x,\xi,t,Q^2) - H(-x,\xi,t,Q^2)$$

• Dual model parametrization of H_+ :

$$2\sum_{n=0}^{\infty}\sum_{l=0}^{n+1}B_{nl}(t,Q^2)\theta\left(1-\frac{x^2}{\xi^2}\right)\left(1-\frac{x^2}{\xi^2}\right)C_{2n+1}^{\frac{3}{2}}\left(\frac{x}{\xi}\right)\underbrace{P_{2l}\left(\frac{1}{\xi}\right)}_{\text{Legendre polynomial}}$$

Fit to a parametrization from the dual model.

Extraction of \mathcal{H} from DVCS at JLab

Preliminary analysis

Leading twist Selected data GV formalism Assumptions

Fitting strategies Local fits Global fit

2

Results

ImH and ReH Discussion

Conclusions

• DVCS cross sections depend on singlet combination H_+ :

$$H_+(x,\xi,t,Q^2) = H(x,\xi,t,Q^2) - H(-x,\xi,t,Q^2)$$

• Dual model parametrization of H_+ :

$$\sum_{n=0}^{\infty} \sum_{l=0}^{n+1} B_{nl}(t, Q^2) \theta\left(1 - \frac{x^2}{\xi^2}\right) \left(1 - \frac{x^2}{\xi^2}\right) \underbrace{C_{2n+1}^{\frac{3}{2}}\left(\frac{x}{\xi}\right)}_{\text{Gegenbauer}} P_{2l}\left(\frac{1}{\xi}\right)$$

polynomial

Fit to a parametrization from the dual model.

 $\begin{array}{c} {\sf Extraction \ of} \\ {\cal H} \ {\sf from \ DVCS} \\ {\sf at \ JLab} \end{array}$

Preliminary analysis

Leading twist Selected data GV formalism Assumptions

Fitting strategies Local fits Global fit

2

Results

ImH and ReH Discussion

Conclusions

• DVCS cross sections depend on singlet combination H_+ :

$$H_+(x,\xi,t,Q^2) = H(x,\xi,t,Q^2) - H(-x,\xi,t,Q^2)$$

• Dual model parametrization of H_+ :

$$\sum_{n=0}^{\infty}\sum_{l=0}^{n+1}B_{nl}(t,Q^2)\underbrace{\theta\left(1-\frac{x^2}{\xi^2}\right)}_{l=0}\left(1-\frac{x^2}{\xi^2}\right) C_{2n+1}^{\frac{3}{2}}\left(\frac{x}{\xi}\right) P_{2l}\left(\frac{1}{\xi}\right)$$

Support : Resummed

(日) (周) (三) (三)

Fit to a parametrization from the dual model.

Extraction of \mathcal{H} from DVCS at JLab

Preliminary analysis

Leading twist Selected data GV formalism Assumptions

Fitting strategies Local fits Global fit

Results

ImH and ReH Discussion

Conclusions

• DVCS cross sections depend on singlet combination H_+ :

$$H_+(x,\xi,t,Q^2) = H(x,\xi,t,Q^2) - H(-x,\xi,t,Q^2)$$

• Dual model parametrization of H_+ :

$$2\sum_{n=0}^{\infty}\sum_{l=0}^{n+1}\underbrace{\frac{\mathcal{B}_{nl}(t,Q^2)}{Model}}_{\text{t-dep.}}\theta\left(1-\frac{x^2}{\xi^2}\right)\left(1-\frac{x^2}{\xi^2}\right) C_{2n+1}^{\frac{3}{2}}\left(\frac{x}{\xi}\right) P_{2l}\left(\frac{1}{\xi}\right)$$

with $\mathcal{B}_{nl}(t,Q^2) = \left(\ln\frac{Q_0^2}{\Lambda^2}/\ln\frac{Q^2}{\Lambda^2}\right)^{\frac{\gamma_P}{\beta_0}} \mathcal{B}_{nl}(t,Q_0^2).$

Fit to a parametrization from the dual model.

 $\begin{array}{c} {\sf Extraction \ of} \\ {\cal H} \ {\sf from \ DVCS} \\ {\sf at \ JLab} \end{array}$

Preliminary analysis

Leading twist Selected data GV formalism Assumptions

Fitting strategies Local fits Global fit

Results

ImH and ReH Discussion

Conclusions

• DVCS cross sections depend on singlet combination H_+ :

$$H_+(x,\xi,t,Q^2) = H(x,\xi,t,Q^2) - H(-x,\xi,t,Q^2)$$

• Dual model parametrization of H_+ :

$$2\sum_{n=0}^{N}\sum_{l=0}^{n+1}\underbrace{B_{nl}(t,Q^2)}_{\text{Model}}\theta\left(1-\frac{x^2}{\xi^2}\right)\left(1-\frac{x^2}{\xi^2}\right) C_{2n+1}^{\frac{3}{2}}\left(\frac{x}{\xi}\right) \quad P_{2l}\left(\frac{1}{\xi}\right)$$
with $B_{nl}(t,Q^2) = \left(\ln\frac{Q_0^2}{\Lambda^2}/\ln\frac{Q^2}{\Lambda^2}\right)^{\frac{\gamma_p}{\beta_0}} \quad \frac{a_{nl}}{1+b_{nl}(t-t_0)^2}.$

• Non-trivial correlation between x and t.

• a_{nl} and b_{nl} are fitted. t_0 is chosen prior to the fits.

Iterative fitting procedure and systematic uncertainties.

 $\begin{array}{c} {\sf Extraction \ of} \\ {\cal H} \ {\sf from \ DVCS} \\ {\sf at \ JLab} \end{array}$

Preliminary analysis

Leading twist Selected data GV formalism Assumptions

Fitting strategies

Local fits Global fit

Results

ImH and ReH Discussion

Conclusions

- Keep bins with $\frac{|t|}{Q^2} < \frac{1}{2}$ (1001 $\phi\text{-bins fitted}).$
- $\frac{N(N+3)}{2}$ fitted coefficients for a given truncation N.
 - $\bullet~$ 10, 18 and 28-parameter fits for N = 2, 3 and 4.
 - Estimation of the truncation error by comparison of the results of these 3 fits.
- Iterative fitting procedure to handle large number of parameters.
- Estimation of systematic errors caused by *H*-dominance hypothesis by fitting data with subdominant GPDs set to 0 or to their VGG value.
- Purpose : smooth parametrization of data. No extrapolation outside the domain of the fit.

Effect of the truncation of the series.

Preliminary analysis

Leading twist Selected data GV formalism Assumptions

Fitting strategies

Local fits Global fit

Results

ImH and ReH Discussion

Conclusions

- 3 global fits qualitatively similar : $\frac{N \chi^2/\text{d.o.f.}}{2 1.73}$ 3 1.61 4 1.78
- No differences on Hall A data (next slide).
- N=2 fails to reproduce BSAs at small ξ.
- N=3 always good and close to local fits.
- N=4 is uncontrolled at

large ξ .

H. MOUTARDE (Irfu/SPhN, CEA-Saclay)

Exclusive 2010 Workshop - 05 / 18 / 2010

9 / 19

Effect of the truncation of the series. Hall A data.

$Im\mathcal{H}$ on Hall B kinematics. Q^2 -dependence.

Preliminary analysis

Leading twist Selected data GV formalism Assumptions

Results

Discussion

• Compatible results of local and global fits : strong consistency check.

• Realistic estimation of systematic uncertainties :

- Comparable accuracy from local and global fits.
- Accuracy in agreement with expectations.
- Restricted kinematic region suitable for GPD-analysis.

$Re\mathcal{H}$ on Hall B kinematics. Q^2 -dependence.

Preliminary analysis

Leading twist Selected data GV formalism Assumptions

Results ImH and ReH

Discussion

Conclusions

- Large fluctuations in *ReH* from local fits. Global fit is smoother.
- Unreliable extraction of *ImH* or *ReH* at large ξ.
- *ReH* weakly constrained.

(日) (周) (三) (三)

$Im\mathcal{H}$ on Hall A kinematics.

ImH. Global fit

t-dependence.

2.5

1.5

H. MOUTARDE (Irfu/SPhN, CEA-Saclay)

 Good agreement between results of local and global fits but... Discrepancy seems to be larger at small |t| ! Sizeable scaling deviation for $t = -0.17 \text{ GeV}^2$. Noticeable deviations if $\xi = x_B \frac{1 + \frac{t}{2Q^2}}{2 - x_B + \frac{x_B t}{Q^2}} \rightarrow \frac{x_B}{2 - x_B}$ • Call for a twist 3 analysis ! Q² (GeV²) 2.5 1.5 Q² (GeV²) 2.5

Exclusive 2010 Workshop - 05 / 18 / 2010 13 / 19

Im \mathcal{H} and $Re\mathcal{H}$ on Hall A kinematics.

Extraction of ${\cal H}$ from DVCS at JLab

Preliminary analysis

Leading twist Selected data GV formalism Assumptions

Fitting strategies

Local fits Global fit

Results

ImH and ReH Discussion

Conclusions

Comparison with other studies (Hall A data). Several approaches : BKM, BKM + "hot fix", GV, VGG.

• First extraction : BKM formalism without "hot fix".

C. Muñoz Camacho *et al.*

Phys. Rev. Lett. 97, 262002 (2006)

• Model-dependent prediction. Fit in progress.

S. Ahmad et al., arXiv:0708.0268

• VGG fitter code.

M. Guidal, EPJA 37, 319 (2008) M. Guidal, arXiv:1003.0307

• "Hot fix" for power suppressed contributions in BKM.

A. Belitsky and D. Müller, PRD79, 014017 (2009)

 $\bullet\,$ Global fit for all unpolarized proton target with BKM $+\,$ "hot fix".

K. Kumericki and D. Müller, arXiv:0904.0458

Comparison with previous studies (Hall A data). Where are we today ?

16 / 19

-0.1

Comparison to the VGG model.

Similar x_B -dependence but loss of information during the extraction.

Conclusions.

JLab DVCS measurements are a challenge to phenomenology.

Extraction of \mathcal{H} from DVCS at JLab

Preliminary analysis

Leading twist Selected data GV formalism Assumptions

Fitting strategies

Local fits Global fit

Results

ImH and ReH Discussion

Conclusions

- *ImH* extracted with 20 to 50 % accuracy on a wide kinematic range.
- Realistic first estimation of systematic errors.
- Plausible early Q^2 -scaling but twist 3 study necessary.
- Working without *H*-dominance hypothesis ? In progress.
- More generally, a global fitting strategy is still missing.

イロト イポト イヨト イヨト

Extraction of ${\cal H}$ from DVCS at JLab

Preliminary analysis

Leading twist Selected data GV formalism Assumptions

Fitting strategies

Local fits Global fit

Results

Im ${\cal H}$ and $Re{\cal H}$ Discussion

Conclusions

Acknowledgments and references.

- I am indebted to :
 - the CLAS group at Saclay :
- * J. Ball
- * M. Garçon
- * P. Konczykowski
 - and also :
- * M. El Yakoubi
- * F.-X. Girod
- * M. Guidal

- * B. Moreno
- * S. Procureur
- * F. Sabatié

- * C. Muñoz Camacho
- * P. Guichon
- * M. Vanderhaeghen
- References for this work :
 - H. M., Phys. Rev. D79, 094021 (2009)
 - M. Guidal and H. M., Eur. Phys. J. A42, 71 (2009)

19 / 19