Extraction of \mathcal{H} from DVCS at JLab

Extraction of the Compton Form Factor \mathcal{H} from recent DVCS measurements at JLab

H. Moutarde, for the CLAS group at Saclay
Irfu/SPhN, CEA-Saclay

$$
\text { Exclusive } 2010 \text { Workshop - } 05 \text { / } 18 \text { / } 2010
$$

(1) Preliminary analysis
(2) Fitting strategies
(3) Results

DVCS described by 4 Compton Form Factors.

Approximations : quark sector, leading twist and leading order.

Extraction of \mathcal{H} from DVCS at JLab

Preliminary analysis

Leading twist

Selected data

 GV formalism Assumptions strategies Local fits Global fitResults
Im \mathcal{H} and $\operatorname{Re} \mathcal{H}$ Discussion Conclusions

- Example : GPD H

$$
\mathcal{H}=\int_{-1}^{+1} d x H(x, \xi, t)\left(\frac{1}{\xi-x-i \epsilon}-\frac{1}{\xi+x-i \epsilon}\right)
$$

- Integration yields real and imaginary parts to \mathcal{H} :

$$
\begin{aligned}
\operatorname{Re\mathcal {H}} & =\mathcal{P} \int_{-1}^{+1} d x H(x, \xi, t)\left(\frac{1}{\xi-x}-\frac{1}{\xi+x}\right) \\
\operatorname{ImH} & =\pi(H(\xi, \xi, t)-H(-\xi, \xi, t))
\end{aligned}
$$

- Relation between ImH and $R e \mathcal{H}$ weakly constrained by dispersion relations. However see :
K. Kumericki and D. Müller, arXiv:0904.0458
G. Goldstein and S. Liuti, $=$ DIS2009

Extraction of \mathcal{H} from DVCS at JLab

Preliminary analysis
Leading twist Selected data GV formalism Assumptions

Fitting
strategies

Local fits

 Global fitResults
$\operatorname{Im} \mathcal{H}$ and $\operatorname{Re} \mathcal{H}$ Discussion Conclusions

Selected JLab data : recent DVCS measurements.

 Fine kinematic binning and large kinematic coverage.
Hall A : helicity-dependent and independent cross sections

C. Muñoz Camacho et al., Phys. Rev. Lett. 97, 262002 (2006)

- 12 bins : 1 value of $x_{B}, 3$ values of Q^{2} and 4 values of t.
- Each kinematic bin contains 24ϕ-bins.
- Statistical uncertainties :
- helicity-dependent : at least 20%
- helicity-independent : $\simeq 5 \%$

Hall B : Beam Spin Asymmetries

F.-X. Girod et al., Phys. Rev. Lett. 100, 162002 (2008)

- 62 bins: 5 value of $x_{B}, 4$ values of Q^{2} and 5 values of t.
- Each kinematic bin contains (at most) 12ϕ-bins.
- Statistical uncertainties : $\simeq 25$ \%

Extraction of \mathcal{H} from DVCS at JLab

Preliminary analysis

Analytic ep $\rightarrow e p \gamma$ cross sections.

Interference between Bethe-Heitler and VCS processes treated exactly.

Example : DVCS helicity-dependent cross section at twist 2

- BKM formalism :

$$
C_{1} \sin \phi \operatorname{Im}\left(\mathcal{H}+\frac{x_{B}}{2-x_{B}}\left(1+\frac{F_{2}}{F_{1}}\right) \tilde{\mathcal{H}}-\frac{t}{4 M^{2}} \frac{F_{2}}{F_{1}} \mathcal{E}\right)
$$

A.V. Belitsky, D. Mueller and A. Kirchner Nucl. Phys. B629, 323 (2002)

- GV formalism :

$$
c_{2} \sin \phi \operatorname{Im}\left(\mathcal{H}+c_{\mathcal{E}} \mathcal{E}+c_{\tilde{\mathcal{H}}} \tilde{\mathcal{H}}+c_{\tilde{\mathcal{E}}} \tilde{\mathcal{E}}\right)
$$

P.A.M. Guichon and M. Vanderhaeghen, unpublished

Extraction of \mathcal{H} from DVCS at JLab

Preliminary analysis
Leading twist Selected data GV formalism Assumptions
Fitting strategies Local fits Global fit

Results
Im \mathcal{H} and $\operatorname{Re} \mathcal{H}$ Discussion Conclusions

Analytic ep $\rightarrow e p \gamma$ cross sections.

Interference between Bethe-Heitler and VCS processes treated exactly.

Example: DVCS helicity-dependent cross section at twist 2

- BKM formalism : coefficients do not depend on Q^{2}

$$
C_{1} \sin \phi \operatorname{Im}\left(\mathcal{H}+\frac{x_{B}}{2-x_{B}}\left(1+\frac{F_{2}}{F_{1}}\right) \tilde{\mathcal{H}}-\frac{t}{4 M^{2}} \frac{F_{2}}{F_{1}} \mathcal{E}\right)
$$

A.V. Belitsky, D. Mueller and A. Kirchner Nucl. Phys. B629, 323 (2002)

- GV formalism : coefficients depend on Q^{2}

$$
C_{2} \sin \phi \operatorname{Im}(\mathcal{H}+\underbrace{c_{\mathcal{E}}}_{20 \%} \mathcal{E}+\underbrace{c_{\tilde{\mathcal{H}}}}_{20 \%} \tilde{\mathcal{H}}+\underbrace{c_{\tilde{\mathcal{E}}}}_{30 \%} \tilde{\mathcal{E}})
$$

P.A.M. Guichon and M. Vanderhaeghen, unpublished

Main assumptions.
Expectation : extraction of \mathcal{H} with $\geq 40 \%$ total uncertainty.

- Twist 2 accuracy

- Early Q^{2}-scaling was observed in Hall A.
C. Muñoz Camacho et al.

$$
\text { Phys. Rev. Lett. 97, } 262002 \text { (2006) }
$$

- Similar recent result concerning a subset of JLab data.
M. Guidal, arXiv:1003.0307
- Small higher twist contribution in Hermes data.
D. Zeiler et al., DIS2008
- H-dominance
- Dramatically decreases the number of degrees of freedom in the fits.
- Expectations: systematic error between 20 and 50 \%.
- Systematic error $\lesssim 25 \%$ from direct test of hypothesis with VGG model.
- The most questionable assumption so far ?

Local fits.
Fits on each kinematic bin to twist 2 expressions.

Extraction of \mathcal{H} from DVCS at JLab

Preliminary analysis
Leading twist Selected data GV formalism Assumptions

Fitting strategies Local fits Global fit

Results
$\operatorname{Im\mathcal {H}}$ and $\operatorname{Re} \mathcal{H}$ Discussion

Conclusions

- Keep bins with $\frac{|t|}{Q^{2}}<\frac{1}{2}$.
- Low model dependence (H-dominance, twist 2).
- But fits may still be underconstrained.
- Estimation of systematic errors caused by H-dominance hypothesis by fitting data with subdominant GPDs set to 0 or to their VGG value.

Global fit.

Fit to a parametrization from the dual model.

- DVCS cross sections depend on singlet combination H_{+}:

$$
H_{+}\left(x, \xi, t, Q^{2}\right)=H\left(x, \xi, t, Q^{2}\right)-H\left(-x, \xi, t, Q^{2}\right)
$$

- Dual model parametrization of H_{+}:

$$
2 \sum_{n=0}^{\infty} \sum_{l=0}^{n+1} B_{n l}\left(t, Q^{2}\right) \theta\left(1-\frac{x^{2}}{\xi^{2}}\right)\left(1-\frac{x^{2}}{\xi^{2}}\right) \quad C_{2 n+1}^{\frac{3}{2}}\left(\frac{x}{\xi}\right) \quad P_{2 I}\left(\frac{1}{\xi}\right)
$$

Global fit.

Fit to a parametrization from the dual model.

- DVCS cross sections depend on singlet combination H_{+}:

$$
H_{+}\left(x, \xi, t, Q^{2}\right)=H\left(x, \xi, t, Q^{2}\right)-H\left(-x, \xi, t, Q^{2}\right)
$$

- Dual model parametrization of H_{+}:

$$
2 \sum_{n=0}^{\infty} \sum_{l=0}^{n+1} B_{n \prime}\left(t, Q^{2}\right) \theta\left(1-\frac{x^{2}}{\xi^{2}}\right)\left(1-\frac{x^{2}}{\xi^{2}}\right) C_{2 n+1}^{\frac{3}{2}}\left(\frac{x}{\xi}\right) \underbrace{P_{2 l}\left(\frac{1}{\xi}\right)}_{\substack{\text { Legendre } \\ \text { polynomial }}}
$$

Global fit.

Fit to a parametrization from the dual model.

- DVCS cross sections depend on singlet combination H_{+}:

$$
H_{+}\left(x, \xi, t, Q^{2}\right)=H\left(x, \xi, t, Q^{2}\right)-H\left(-x, \xi, t, Q^{2}\right)
$$

- Dual model parametrization of H_{+}:

$$
2 \sum_{n=0}^{\infty} \sum_{l=0}^{n+1} B_{n \prime}\left(t, Q^{2}\right) \theta\left(1-\frac{x^{2}}{\xi^{2}}\right)\left(1-\frac{x^{2}}{\xi^{2}}\right) \underbrace{C_{2 n+1}^{\frac{3}{2}}\left(\frac{x}{\xi}\right)}_{\substack{\text { Gegenbauer } \\ \text { polynomial }}} P_{2 l}\left(\frac{1}{\xi}\right)
$$

Global fit.

Fit to a parametrization from the dual model.

- DVCS cross sections depend on singlet combination H_{+}:

$$
H_{+}\left(x, \xi, t, Q^{2}\right)=H\left(x, \xi, t, Q^{2}\right)-H\left(-x, \xi, t, Q^{2}\right)
$$

- Dual model parametrization of H_{+}:

$$
2 \sum_{n=0}^{\infty} \sum_{l=0}^{n+1} B_{n \prime}\left(t, Q^{2}\right) \underbrace{\theta\left(1-\frac{x^{2}}{\xi^{2}}\right)}_{\substack{\text { Support: } \\ \text { Resummed }}}\left(1-\frac{x^{2}}{\xi^{2}}\right) \quad C_{2 n+1}^{\frac{3}{2}}\left(\frac{x}{\xi}\right) \quad P_{2 l}\left(\frac{1}{\xi}\right)
$$

Global fit.

Fit to a parametrization from the dual model.

Extraction of \mathcal{H} from DVCS at JLab

Preliminary analysis
Leading twist Selected data GV formalism Assumptions

Fitting strategies Local fits Global fit

Results
Im \mathcal{H} and $\operatorname{Re} \mathcal{H}$ Discussion

Conclusions

- DVCS cross sections depend on singlet combination H_{+}:

$$
H_{+}\left(x, \xi, t, Q^{2}\right)=H\left(x, \xi, t, Q^{2}\right)-H\left(-x, \xi, t, Q^{2}\right)
$$

- Dual model parametrization of H_{+}:

$$
\begin{gathered}
2 \sum_{n=0}^{\infty} \sum_{l=0}^{n+1} \underbrace{B_{n \prime}\left(t, Q^{2}\right)}_{\begin{array}{c}
\text { Model } \\
\text { t-dep. }
\end{array}} \theta\left(1-\frac{x^{2}}{\xi^{2}}\right)\left(1-\frac{x^{2}}{\xi^{2}}\right) \quad C_{2 n+1}^{\frac{3}{2}}\left(\frac{x}{\xi}\right) \quad P_{2 I}\left(\frac{1}{\xi}\right) \\
\quad \text { with } B_{n \prime}\left(t, Q^{2}\right)=\left(\ln \frac{Q_{0}^{2}}{\Lambda^{2}} / \ln \frac{Q^{2}}{\Lambda^{2}}\right)^{\frac{\gamma_{p}}{\beta_{0}}} B_{n \prime}\left(t, Q_{0}^{2}\right) .
\end{gathered}
$$

Global fit.

Fit to a parametrization from the dual model.

Preliminary analysis

- DVCS cross sections depend on singlet combination H_{+}:

$$
H_{+}\left(x, \xi, t, Q^{2}\right)=H\left(x, \xi, t, Q^{2}\right)-H\left(-x, \xi, t, Q^{2}\right)
$$

- Dual model parametrization of H_{+}:

$$
\begin{aligned}
& 2 \sum_{n=0}^{N} \sum_{l=0}^{n+1} \underbrace{B_{n \prime}\left(t, Q^{2}\right)}_{\substack{\text { Model } \\
\mathrm{t}-\text { dep. }}} \theta\left(1-\frac{x^{2}}{\xi^{2}}\right)\left(1-\frac{x^{2}}{\xi^{2}}\right) \quad C_{2 n+1}^{\frac{3}{2}}\left(\frac{x}{\xi}\right) \quad P_{2 I}\left(\frac{1}{\xi}\right) \\
& \text { with } B_{n \prime}\left(t, Q^{2}\right)=\left(\ln \frac{Q_{0}^{2}}{\Lambda^{2}} / \ln \frac{Q^{2}}{\Lambda^{2}}\right)^{\frac{\gamma_{p}}{\beta_{0}}} \frac{a_{n l}}{1+b_{n \prime}\left(t-t_{0}\right)^{2}} \text {. }
\end{aligned}
$$

- Non-trivial correlation between x and t.
- $a_{n l}$ and $b_{n l}$ are fitted. t_{0} is chosen prior to the fits.

Extraction of \mathcal{H} from DVCS at JLab

Preliminary analysis

Global fit.

Iterative fitting procedure and systematic uncertainties.

- Keep bins with $\frac{|t|}{Q^{2}}<\frac{1}{2}$ (1001 ϕ-bins fitted).
- $\frac{N(N+3)}{2}$ fitted coefficients for a given truncation N.
- 10,18 and 28 -parameter fits for $N=2,3$ and 4 .
- Estimation of the truncation error by comparison of the results of these 3 fits.
- Iterative fitting procedure to handle large number of parameters.
- Estimation of systematic errors caused by H-dominance hypothesis by fitting data with subdominant GPDs set to 0 or to their VGG value.
- Purpose : smooth parametrization of data. No extrapolation outside the domain of the fit.

Effect of the truncation of the series.

Hall B data.

\mathcal{H} from DVCS at JLab

Preliminary analysis
Leading twist Selected data GV formalism Assumptions

Fitting
strategies
Local fits
Global fit
Results
ImH Discussion Conclusions

- 3 global fits qualitatively similar :

N	$\chi^{2} /$ d.o.f.
2	1.73
3	1.61
4	1.78

- No differences on Hall A data (next slide).
- $N=2$ fails to reproduce BSAs at small ξ.
- $N=3$ always good and close to local fits.
- $N=4$ is uncontrolled at large ξ.

Effect of the truncation of the series. Hall A data.

Extraction of \mathcal{H} from DVCS at JLab

Preliminary analysis
Leading twist Selected data GV formalism Assumptions
Fitting
strategies
Local fits
Global fit
Results
lmH and $\operatorname{Re} \mathcal{H}$ Discussion Conclusions

ImH on Hall B kinematics.

 Q^{2}-dependence.Extraction of \mathcal{H} from DVCS at JLab

Preliminary analysis
Leading twist Selected data GV formalism Assumptions
Fitting strategies Local fits Global fit

Results lmH and $\operatorname{Re} \mathcal{H}$ Discussion Conclusions

ImH, Local tits

- Compatible results of local and global fits : strong consistency check.
- Realistic estimation of systematic uncertainties :
- Comparable accuracy from local and global fits.
- Accuracy in agreement with expectations.
- Restricted kinematic region suitable for GPD-analysis.

Re \mathcal{H} on Hall B kinematics.

 Q^{2}-dependence.```
Extraction of
H from DVCS
 at JLab
```

Preliminary analysis
Leading twist Selected data GV formalism Assumptions

Fitting strategies Local fits Global fit

Results ImH Discussion Conclusions

ReH, Local fits


- Large fluctuations in $R e \mathcal{H}$ from local fits. Global fit is smoother.
- Unreliable extraction of $\operatorname{ImH}$ or $\operatorname{Re} \mathcal{H}$ at large $\xi$.
- $R e \mathcal{H}$ weakly constrained.
$\operatorname{lrfu}$ cea saclay

Extraction of $\mathcal{H}$ from DVCS at JLab

Preliminary analysis
Leading twist Selected data GV formalism Assumptions
Fitting strategies Local fits Global fit

Results $\operatorname{lmH}$ and $\operatorname{Re} \mathcal{H}$ Discussion Conclusions

## ImH on Hall A kinematics.

 $t$-dependence.
H. Moutarde (Irfu/SPhN, CEA-Saclay)

- Good agreement between results of local and global fits but...
- Discrepancy seems to be larger at small $|t|$ !
- Sizeable scaling deviation for $t=-0.17 \mathrm{GeV}^{2}$.
- Noticeable deviations if

$$
\xi=x_{B} \frac{1+\frac{t}{2 Q^{2}}}{2-x_{B}+\frac{x_{B} t}{Q^{2}}} \rightarrow \frac{x_{B}}{2-x_{B}}
$$

- Call for a twist 3 analysis !


## $I m \mathcal{H}$ and $\operatorname{Re\mathcal {H}}$ on Hall A kinematics.

 $t$-dependence.```
Extraction of
H from DVCS
    at JLab
```

Preliminary
analysis
Leading twist
Selected data
GV formalism
Assumptions
Fitting
strategies
Local fits
Global fit
Results
ImH
Discussion
Conclusions

Comparison with other studies (Hall A data). Several approaches : BKM, BKM + "hot fix", GV, VGG.

- First extraction : BKM formalism without "hot fix".
C. Muñoz Camacho et al. Phys. Rev. Lett. 97, 262002 (2006)
- Model-dependent prediction. Fit in progress.
S. Ahmad et al., arXiv:0708.0268
- VGG fitter code.
M. Guidal, EPJA 37, 319 (2008)
M. Guidal, arXiv:1003.0307
- "Hot fix" for power suppressed contributions in BKM.
A. Belitsky and D. Müller, PRD79, 014017 (2009)
- Global fit for all unpolarized proton target with BKM + "hot fix".
K. Kumericki and D. Müller, arXiv:0904.0458
lrfu cea

Comparison with previous studies (Hall A data). Where are we today ?

saclay

Extraction of \mathcal{H} from DVCS at JLab

Preliminary analysis
Leading twist Selected data GV formalism Assumptions

Fitting strategies Local fits Global fit

Results Im \mathcal{H} and $\operatorname{Re} \mathcal{H}$ Discussion

Conclusions

Comparison to the VGG model.

Similar x_{B}-dependence but loss of information during the extraction.

Preliminary analysis
Leading twist Selected data GV formalism Assumptions

Fitting

 strategies Local fits Global fitResults Im \mathcal{H} and $\operatorname{Re} \mathcal{H}$ Discussion

Conclusions

Conclusions.
JLab DVCS measurements are a challenge to phenomenology.

```
Extraction of
H from DVCS
    at JLab
```

Preliminary analysis

- $\operatorname{Im} \mathcal{H}$ extracted with 20 to $\mathbf{5 0} \%$ accuracy on a wide kinematic range.
- Realistic first estimation of systematic errors.
- Plausible early Q^{2}-scaling but twist 3 study necessary.
- Working without H -dominance hypothesis ? In progress.
- More generally, a global fitting strategy is still missing.

Acknowledgments and references.

- I am indebted to:
- the CLAS group at Saclay :

\author{

* J. Ball
 * M. Garçon
 * P. Konczykowski
}
- and also :
* M. El Yakoubi
* F.-X. Girod
* M. Guidal
$*$ B. Moreno
$*$ S. Procureur
$*$ F. Sabatié
* C. Muñoz Camacho
* P. Guichon
* M. Vanderhaeghen
- References for this work:
- H. M., Phys. Rev. D79, 094021 (2009)
- M. Guidal and H. M., Eur. Phys. J. A42, 71 (2009)

