

MEASUREMENT OF GENERALIZED FORM FACTORS NEAR THE PION THRESHOLD IN HIGH Q2

MAY. 18-21, 2010 Exclusive Reactions @ High Q2

Kijun Park

Perspective of soft pion in terms of Q² at threshold

=0 GeV² **Low-Energy Theorem (LET) for Q²=0** 1954 Kroll-Ruderman **Restriction to the charged pion Chiral symmetry + current algebra for electroproduction** 1960s Nambu, Laurie, Schrauner $^2 << \Lambda/m_{\pi} \sim 1 \text{GeV}^2$ Re-derived LETs Vainshtein, Zakharov **Current algebra + PCAC** 1990s **Chiral perturbation theory** Scherer, Koch **pQCD** factorization methods Brodsky, Lepage, Efremov, Radyunshkin, Pobylitsa, Polyakov, Strikman, et al

EXCLUSIVE WORKSHOP MAY. 20, 2010

Jefferson Lab

LCSR (Light Cone Sum Rule)

$$\langle N(P')\pi(k)|j_{\mu}^{\mathsf{em}}(0)|p(P)\rangle = -\frac{i}{f_{\pi}}\bar{N}(P')\gamma_{5}\left\{ (\gamma_{\mu}q^{2} - q_{\mu}q)\frac{1}{m_{N}^{2}}G_{1}^{\pi N}(Q^{2}) - \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_{N}}G_{2}^{\pi N}(Q^{2})\right\}p(P)$$

$$+ \frac{ic_{\pi}g_{A}}{2f_{\pi}[(P'+k)^{2} - m_{N}^{2}]}\bar{N}(P')k\gamma_{5}(P'+m_{N})\left\{F_{1}^{p}(Q^{2})\left(\gamma_{\mu} - \frac{q_{\mu}q}{q^{2}}\right) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m_{N}}F_{2}^{p}(Q^{2})\right\}p(P)$$

- S-wave: generalized form factors from LCSR $(G_1^{\pi N} \text{ and } G_2^{\pi N})$
- P-wave: pion emission from final state nucleon
- Constructed relating the amplitude for the radiative decay of $\Sigma^+(p\gamma)$ to properties of the QCD vacuum in alternating magnetic field.
- An advantage of study because soft contribution to hadron form factor can be calculated in terms of DA's that enter pQCD calculation without other nonperturbative parameters.
- New technique : the expansion of the standard QCD sum rule approach to hadron properties in alternating external fields.

Thomas Jefferson National Accelerator Facility

CEBAF Large Acceptance Spectrometers

Kinematical Coverage

Differential Cross Section

Variable	Unit	Range	# Bin	Width	
Q ²	GeV ²	2.05 ~ 4.16	5	various	
W	GeV	1.11 ~ 1.15	3	0.02	
$\cos \theta_{\pi}^{*}$		-1.0~ 1.0	10	0.2	
φ*π	Deg.	0. ~ 360.	12	30	

 E=5.754GeV(pol.), LH2 target (unpol.)
 IB=3375/6000A, Oct. 2001-Jan. 2002

EXCLUSIVE WORKSHOP MAY. 20, 2010

K. Park

Legendre moments vs. Form Factors

K. PARK

Preliminary differential cross sections

🎯 🔁

EXCLUSIVE WORKSHOP MAY. 20, 2010

K. Park

Jefferson Lab

Preliminary differential cross sections

Jefferson Lab

K. PARK

🎯 👯

Preliminary differential cross sections

Jefferson Lab

K. PARK

Mutipole extraction

Red lines : LCSR solid line : pure calc. dash line :exp. F. F. input Blue line : MAID07, E0+ Black MAId07 L0+

JA

Blue dash line = MAID2007

Blue open circle (o) = RC corr. w/ SLee04 Red solid circle (o) = RC corr. w/ MAID03

K. PARK

Jefferson Lab

Structure functions

<u>Color index</u> Red : full MAID calculation Green : SO+ absence Black : EO+ absence

-JSA

Jefferson Lab

K. PARK

Structure functions

Jefferson Lab

K. PARK

Structure functions

Mutipole extraction

Mutipole extraction

Multipoles Analysis

I. G. Aznauryan, PRD 57, 2727 (1998)

Using six amplitudes (F_i): ** if $I_{\pi} = 1$

Helicity amplitudes (H_i):

Structure functions vs. Helicity amplitudes (H_i):

$$F_{1} = E_{0+} + 3^{*}\cos(\theta)^{*}(E_{1+} + M_{1+})$$

$$F_{2} = 2^{*}M_{1+} + M_{1-}$$

$$F_{3} = 3^{*}(E_{1+} - M_{1+})$$

$$F_{4} = 0$$

$$F_{5} = S_{0+} + 6^{*}\cos(\theta)^{*}S_{1+}$$

$$F_{6} = S_{1-} - 2^{*}S_{1+}$$

$$H_{1} = (-1/sqrt(2))^{*}\cos(\theta/2)^{*}sin(\theta)^{*}(F_{3} + F_{4})$$

$$H_{2} = -1^{*}sqrt(2)^{*}cos(\theta/2)^{*}(F_{1} - F_{2} - sin(\theta)^{*}(F_{3} - F_{4}))$$

$$H_{3} = (1/sqrt(2))^{*}sin(\theta/2)^{*}sin(\theta)^{*}(F_{3} - F_{4})$$

$$H_{4} = sqrt(2)^{*}sin(\theta/2)^{*}(F_{1} + F_{2} + (cos(\theta/2))^{**}2^{*}(F_{3} + F_{4}))$$

$$H_{5} = -1^{*}(sqrt(Q_{2})/abs(k_{-}cm))^{*}cos(\theta/2)^{*}(F_{5} - F_{6})$$

$$\sigma_{7+L} = (1/2)^{*}(H_{1}^{2} + (H_{2}^{2})^{*}(H_{3}^{2}) + H_{4}^{2}) + \varepsilon^{*}(H_{5}^{2} + H_{6}^{2})$$

$$\sigma_{7T} = H_{3}^{*}H_{2} - H_{4}^{*}H_{1}$$

$$\sigma_{LT} = (-1/sqrt(2))^{*}(H_{5}^{*}(H_{1} - H_{4}) + H_{6}^{*}(H_{2} + H_{3}))$$

K. PARK

Jefferson Lab

Constraints :

- * E_{0+} , S_{0+} are dominated in this regime.
- ** $M_{1\text{-}},\,S_{1\text{-}}$ were used from MAID2007 model prediction.

 $\rightarrow G_{D'} = (1+Q2/mu_02)^2$ $\rightarrow GM = 3.*exp(-0.21*Q2)/(1.+0.0273*Q2-0.0086*Q2^2)/G_{D'}$ $\rightarrow M_{1+} = (Y_0/52.437)*GM * sqrt(((2.3933+Q2)/2.46)**2-0.88)*G.786$ $\rightarrow E_{1+} = -0.02 * M_{1+}$ $\rightarrow R_sm = -6.066 - 8.5639*Q2 + 2.3706*Q2^2 + 5.807* sqrt(Q2) - 0.75445*Q2^2* sqrt(Q2)$ $\rightarrow S_{1+} = R_sm^*M_{1+}/100.$

where, mu_02=0.71, Y_0 is the interpolation value from SAID model.

Multipoles extraction

- As first time, EO+ multipole comparison near pion threshold between two methods (LCSR, multipole fit) was performed.
- Multipole analysis gives us same answer for extracting EO+ multipole with LCSR method.
- Direct use of neutron magnetic form factor from CLAS publication gives consistent result with F.F. parametrization.
- EO+ plays an important role in forward angle, which is consistent with models prediction

BACKUP SLIDES

Sources	Criteria	Avg.Sys.Error
e^- PID	width of sampling fraction cut in EC	$\sim 4\%$
	$(3\sigma_{SF} \rightarrow 3.5\sigma_{SF})$	
e^- fiducial cut	Width $(10\% \text{ reduced})$	2.2%
π^+ PID	β resolution change	1.3%
	$(2\sigma_{TOF} \rightarrow 2.5\sigma_{TOF})$	
π^+ fiducial cut	Width $(10\% \text{ reduced})$	$\sim 3\%$
MMx cut (n)	neutron missing mass resolution	$\sim 1\%$
	$(3\sigma_{MMx} \to 3.5\sigma_{MMx})$	
vertex cut	width $(5\% \text{ reduced})$	$\sim 1\%$
Acceptance	event generator dependence	$\sim 4\%$
correction	between AAO and GENEV	
radiative	physics model dependence	$\sim 0.5\%$
correction	between SLee04 and MAID03	
Total		$\sim 7.05\%$

- Enrgy dependent generalized form factors generated by FSI
- Adding D-wave contributio model
- Tune calculation with low Q^2 and high W experimental data
- Systematic approach in the global PWA analysis framework in Np and g*N scattering under QCD S-, P- and D partial waves.

K. PARK Jefferson Lab

Legendre – moment vs. F. F. for $n\pi^+$ channel

Jefferson Lab

K. PARK

Legendre moments vs. Form Factors

$$G_{1}^{\pi^{+}n} \quad G_{2}^{\pi^{+}n} \quad G_{2}^{\pi^{+}n} \qquad G_{1}^{\pi^{+}n} = x_{1} + iy_{1}$$

$$G_{2}^{\pi^{+}n} = x_{2} + iy_{2}$$

$$A_{0} = D_{0}^{T+L} = \frac{1}{f_{\pi}^{2}} \left[\frac{4k_{i}^{2}Q^{2}}{m_{p}^{2}} |G_{1}^{\pi^{+}n}|^{2} + \frac{c_{\pi}^{2}g_{A}^{2}k_{f}^{-2}}{W^{2} - m_{p}^{2}} Q^{2}m_{p}^{2}G_{M}^{n2} \right]$$

$$A_{1} = D_{1}^{T+L} = \frac{1}{f_{\pi}^{2}} \frac{4c_{\pi}g_{A}|k_{i}||k_{f}|}{W^{2} - m_{p}^{2}} \left(Q^{2}G_{M}^{n} \operatorname{Re}\left(G_{1}^{\pi^{+}n}\right) \right)$$

$$g_{AI} = -\frac{1}{f_{\pi}^{2}} \frac{4c_{\pi}g_{A}|k_{i}||k_{f}|}{W^{2} - m_{p}^{2}} \left(Q^{2}G_{M}^{n} \operatorname{Re}\left(G_{1}^{\pi^{+}n}\right) \right)$$

 $C_{0} = C_{0}^{TT} = 0$

 $g_{A1} = 1.2677$ $c_{\pi \tau^{++}} = \sqrt{2}$ $f_{\pi \tau} = 9311/eV/$

 $D_0 = D_0^{LT} = 0$

l-moments vs. F. F. for $n\pi^+$ channel

Due to low-energy theorem(LET) relates the S-wave multipoles or equivalently, the form factor G_1 , G_2 @ threshold $m_{\pi} = 0$

Legendre-moments vs. F. F.

$$G_{1}^{\pi^{+}n} \quad G_{2}^{\pi^{+}n} \qquad G_{1}^{\pi^{+}n} \qquad G_{1}^{\pi^{+}n} = x_{1} + iy_{1}$$

$$G_{2}^{\pi^{+}n} = x_{2} + iy_{2}$$

$$A_{0} = D_{0}^{T+L} = \frac{1}{f_{\pi}^{2}} \left[\frac{4k_{e}^{2}Q^{2}}{m_{N}^{2}} |G_{1}^{\pi N}|^{2} + \frac{c_{\pi}^{2}g_{A}^{2}k_{f}^{-2}}{W^{2} - m_{N}^{2}} Q^{2}m_{N}^{2}G_{M}^{2} + \varepsilon_{L} \left(\vec{k}_{e}^{-2} |G_{2}^{\pi N}|^{2} + \frac{4c_{\pi}^{2}g_{A}^{2}k_{f}^{-2}}{W^{2} - m_{N}^{2}} m_{N}^{4}G_{E}^{2} \right) \right]$$

$$A_{1} = D_{1}^{T+L} = \frac{1}{f_{\pi}^{2}} \frac{4c_{\pi}g_{A} |k_{e}| |k_{f}|}{W^{2} - m_{N}^{2}} \left(Q^{2}G_{M} \operatorname{Re} \left(G_{1}^{\pi N} \right) - \varepsilon_{L}m_{N}^{2}G_{E} \operatorname{Re} \left(G_{2}^{\pi N} \right) \right)$$

$$g_{A} = 1.2677$$

$$C_{0} = C_{0}^{TT} = 0$$

$$D_{0}^{LT} = -\frac{1}{f_{\pi}^{2}} \frac{c_{\pi}g_{A} |k_{e}| |k_{f}|}{W^{2} - m_{N}^{2}} Qm_{N} \left(G_{M} \operatorname{Re} \left(G_{2}^{\pi N} \right) + 4G_{E} \operatorname{Re} \left(G_{1}^{\pi N} \right) \right)$$

$$f_{\pi e}^{-} = 98M \ell V$$

EXCLUSIVE WORKSHOP MAY. 20, 2010

K. PARK Jeff

$$G_1^{\pi^+ n} = x_1 + iy_1$$

 $G_2^{\pi^+ n} = x_2 + iy_2$

* 3 Eqs. 4 parameter should be determined

- * Real parts x1, x2 can be determined by A1, DO legendre coeff.
- * Imaginary parts y1, y2 can be determined in 2 cases

* Asymmetry helps to determine complete form factor

$$D_{0}^{\prime} = D_{0}^{LT \prime} = -\frac{1}{f_{\pi}^{2}} \frac{c_{\pi} g_{A} |k_{i}| |k_{f}|}{W^{2} - m_{N}^{2}} Q m_{N} \left(G_{M} \operatorname{Im} \left(G_{2}^{\pi N}\right) - 4G_{E} \operatorname{Im} \left(G_{1}^{\pi N}\right)\right)$$

- Historically, threshold pion in the photo- and electroproduction is the very old subject that has been receiving continuous attention from both experiment and theory sides for many years.
- Pion mass vanishing approximation in Chiral Symmetry allows us to make an exact prediction for threshold cross section known as LET
- The LET established the connection between charged pion electroproduction and axial form factor in nucleon.
- Therefore, It is very interesting to extracting Axial Form Factor which is dominated by S- wave transverse multipole E₀₊ in LCSR

- Constructed relating the amplitude for the radiative decay of $\Sigma^+(p\gamma)$ to properties of the QCD vacuum in alternating magnetic field.
- An advantage of study because soft contribution to hadron form factor can be calculated in terms of DA's that enter pQCD calculation without other nonperturbative parameters.
- New technique : the expansion of the standard QCD sum rule approach to hadron properties in alternating external fields.

