Exclusive π⁺ Electroproduction at High Momentum Transfer

Georgie Mbianda¹ for the Hall-C Baryon Collaboration

¹ University of the Witwatersrand, South Africa

Introduction

➤ The differential cross section of the process e + p → e' + π⁺ + n has been measured at an average Q² = 5.5 GeV² in the low invariant mass range of 1.3 < W < 2 GeV at forward angles</p>

This is one of the highest Q² measurements of this exclusive process

The missing mass (the neutron mass in this process) is obtained from the expression

$$\begin{split} M_X{}^2 &= M_n{}^2 = E_X{}^2 - |P_X|^2 \\ where \quad E_X{}^2 &= v + M_P - E_\pi \\ and \quad E_\pi{}^2 &= M_\pi{}^2 + |P_\pi|^2 \end{split}$$

Experimental Setup

Angular Coverage

> The detected pions were very forward in the center of mass system; $\cos\theta_{cm} > 0.6$

Particle Identification

- In the HMS, π⁺ were separated from protons by using TOF calibration a combination of coincidence time (drift between trigger times of both spectrometers) and particle velocity
- > In the SOS, electrons were separated from π ⁻ by the aid of the threshold gas Cerenkov detector and the lead-glass calorimeter

Coincidence Correction for π^+ Events

In the HMS, the TOF was corrected to make the pion appear at a specific time independent of momentum

So, an interval on the timing spectrum allowed us to select pion events

Exclusive π^+ and M_X^2 cut

- \succ We deal exclusively with π^+ electroproduction by introducing an M_X^{-2} cut
- > The detected π^+ at the HMS could come from nucleon resonance decay processes such as:

 $N^* \rightarrow n + \pi^+$ and $N^* \rightarrow n + \pi^o + \pi^+$

> Introducing the cut $0.8 < M_X^2 < 1$ thereby avoids the multipion background that begins at an M_X^2 threshold of about 1.16 GeV²

Result - Cross Sections

MAID 2003 cross section extrapolated at $Q^2 = 5.5 \text{ GeV}^2$, using the dipole form factor $G = (1-q^2/0.71)^{-2}$

Extracted cross section from data of experiment integrated over all φ_{cm}

Conclusion

> The cross section of the process $e + p \rightarrow e' + \pi^+ + n$ was measured at Q² = 5.5 GeV²

Preliminary results are sensitive to high-mass baryon resonances, as well as t-channel processes and diverge significantly from an extrapolation of the lower Q² data

With results from other higher Q² data, the transition form factors into higher resonances can be measured.

> Systematic errors under studies