SLAC E-158 Beam: Setup, Instrumentation & Systematics JLAB Electroweak Workshop, December 2006

Outline

Beam Setup

- parameters and performance
- source laser and photocathode, helicity control

(see talk by G. Cates tomorrow)

• dithering coils, skew quad

Beam Instrumentation

- rf BPMs, toroids, spotsize wire array
- synchrotron radiation monitor

Beam Asymmetries & Systematics

- position, energy, charge
- spotsize
- beam parameter correlations and higher order effects
- synchrotron radiation
- target density fluctuations

E158 Beam References

Source Laser System (+ minimization of beam helicity correlations)

• B. Humensky et al., SLAC-PUB-9381, 2002. Published in Nucl.Instrum.Meth.A521: 261-298, 2004. e-Print Archive: physics/0209067.

RF BPM Monitors

• D.H. Whittum and Y. Kolomensky, SLAC-PUB-7846, 1998. Published in Rev.Sci.Instrum.70:2300-2313,1999.

Student Theses (8 Ph.D and 2 senior undergrad theses)

• www-project.slac.stanford.edu/e158/press_papers.html#theses

Accelerator Physics

- *A Test of NLC-type beam loading in the SLAC linac*, F.J. Decker et al., SLAC-PUB-10726, 2003. Published in *PAC 03* Proceedings, 2754-2756.
- Interlaced beams of unequal energy and pulse length in the SLAC linac for *PEP-II and experiment E-158*, F.J. Decker et al., SLAC-PUB-9361, 2002. Published in *EPAC 02* Proceedings, 885-887.
- A High intensity highly polarized electron beam for high-energy physics, J.L. Turner et al., SLAC-PUB-9235, 2002. Published in *EPAC 02* Proceedings, 1419-1421.
- *Beam stabilization in the SLAC A-line using a skew quadrupole,* M. Woodley et al., SLAC-PUB-9233, 2002. Published in *EPAC 02* Proceedings, 1208-1210.
- *High power beam at SLAC*, F.J. Decker et al., SLAC-PUB-9359, 2002. Published in *PAC 01* Proceedings, 3936-3938.

Polarized Source Laser System

Beam Asymmetry Feedbacks

Laser Polarization Control And Analysis

Electric Field Vector after PS Cell in Jones Matrix notation:

$$|E\rangle = \begin{bmatrix} \sin\left(\frac{\delta_{CP}}{2}\right) \\ e^{i\left(\frac{\pi}{2} + \delta_{PS}\right)} \cos\left(\frac{\delta_{CP}}{2}\right) \end{bmatrix}$$

$$(s_1^2 + s_2^2) + s_3^2 = L^2 + C^2 = 1$$

(ex. C=0.998, L=0.063)

Allow for imperfect Pockels cells and phase shifts in downstream optics:

	Left Pulse	Right Pulse
δ _{CP}	$-\pi/2 - \alpha_{CP} + \Delta_{CP}$	$+\pi/2 + \alpha_{CP} + \Delta_{CP}$
δ _{PS}	$- \alpha_{PS} + \Delta_{PS}$	$-\alpha_{PS} + \Delta_{PS}$
s ₁	$\sim - \alpha_{CP} + \Delta_{CP}$	$\sim - \alpha_{CP}$ - Δ_{CP}
s ₂	$\sim - \alpha_{PS} + \Delta_{PS}$	$\sim - lpha_{PS}$ - Δ_{PS}

 Δ_{CP}, Δ_{PS} introduce \rightarrow significant linear polarization asymmetries

Charge Asymmetry due to anisotropic strain*

 $V_{OW} \sim 2700 V$

*Reference: R.A. Mair et al., Phys. Lett. A212, 231 (1996)

(L-R) Position Differences observed at 1 GeV

How do position differences evolve from photocathode to Expt Target?

- adiabatic damping: emittance is reduced as beam is accelerated (I **do not** believe this is a significant effect; L-R position differences just scale with spotsize)
- should scale ~ with laser spotsize on cathode to electron spotsize at target (for E158, rms spotsize on cathode ~5-8mm; rms spotsize on target ~1mm)
- should have position asymmetries at cathode, not angle asymmetries for electron beam (good for position asymmetry feedback, but did have trouble getting

phase advance acceptable to 1 GeV point for feedback)

- → can choose phase advance in Linac so position at cathode maps to angle at target, but then get angle asymmetries at target
- implement Asymmetry Inverter for electron beam! Find 2 quad lattices related by
 - "-I" transformation do this with scaling quadrupole strength to change # betatron oscillations; tried this for E158 not much success due to unstable position differences

Photocathode for Polarized Gun

Source Photocathode for Runs 1,2

New photocathode from NLC R&D effort.

(T. Maruyama et al., SLAC-PUB-9133, March 2002;

published in Nucl.Instrum.Meth.A492:199-211,2002)

Beam Helicity Control and Reversals

Beam helicity is chosen pseudo-randomly at 120 Hz

- use electo-optical Pockels cell in Polarized Light Source
- sequence of pulse quadruplets; one quadruplet every

33 ms: $R_1 R_2 \overline{R_1} \overline{R_2} R_3 R_4 \overline{R_3} \overline{R_4} \cdots$

Physics Asymmetry Reversals:

- Insertable Halfwave Plate in Polarized Light Source
- (g-2) spin precession in A-line (45 GeV and 48 GeV data)

'Null Asymmetry' Cross-check is provided by a Luminosity Monitor

• measure very forward angle e-p (Mott) and Moller scattering

Also, False Asymmetry Reversals: (reverse false beam position and angle asymmetries; physics asymmetry unchanged) • Insertable "-I/+I" Inverter in Polarized Light Source

Timeslot 2

RRR

Timeslot 1 Quadruplet

Pockels Cell

Voltage

Techniques for minimizing ^{beam}**A**_{LR}'s

At the start:

 \rightarrow ~1000 ppm, ~2 μ m systematics

1) Passive setup:

- Helicity bits delayed by 1 pulse and RF modulated prior to broadcast.
- Collimation of laser beam and minimization of spot size at CP, PS cells.
- Image CP, PS cells onto the cathode.
- OTS brought to atmospheric pressure to avoid stress-induced birefringence in windows.
- Select Pockels cells and carefully align to minimize systematics.
- Null A_Q with Δ_{CP} , Δ_{PS} .

2) Active suppression with feedbacks:

- IA loop & POS loop.
- Double-feedback loop.

 \rightarrow <100 ppb, <100 nm

3) Slow reversals:

- Flip certain classes of asymmetries while leaving everything else unchanged.
 - λ/2 plates (2)
 - energy (g-2 precession)
 - asymmetry inverter

• These can provide cancellation of systematics, but they also serve as a cross-check that systematics are well-understood. Multiple reversals are essential!

Can compare measurements of neighboring devices to determine the precision of the measurement.

"ANALYSIS OF AN ASYMMETRIC RESONANT CAVITY AS A BEAM MONITOR" (David H. Whittum (SLAC), Yury Kolomensky (Caltech). SLAC-PUB-7846; published in Rev.Sci.Instrum.70:2300-2313,1999.)

Toroids for E-158

(L-R) Spotsize Difference Effects

1. Beam Intensity, Spotsize and Mixing fluctuations

- LH₂ Target density can change during the 300-ns beam pulse
- Incomplete mixing between pulses (hysteresis)
- Expect spotsize fluctuations (~2% rms/pulse) to dominate over intensity fluctuations (~0.5% rms/pulse)
- No (L-R) feedback on spotsize differences → need to worry about (L-R) spotsize differences

Hysteresis effects contribute jitter but *not* systematic biases (re. fast helicity switching) - hysteresis effects can be large since it takes ~26 beam pulses at 120Hz for a packet of LH_2 to traverse the 1.5m target length

- 2. Geometry: acceptance effects from dependence on position, angle due to collimators and detector edges
 - Moller Detector acceptance can be sensitive to beam spotsize

i) Incomplete mixing between pulses

- Flow velocity is 7m/s; 8 wire mesh disks introduce turbulence (at ~1mm scale, comparable to beam spotsize) and transverse flow (xverse displacement ~4mm in 8ms) to allow mixing between beam pulses (similar effect as rastering). Estimate ~300ppm density reduction along beam path per bunch for our beam conditions
- Fluid in beam path for 26 consecutive pulses @120Hz
- \rightarrow expect fluid exiting beam path ~0.8% lower density than fluid entering beam path!

Jitter from incomplete mixing (no asymmetry bias, due to random p-p helicity flips)
1% intensity or spotsize jitter is estimated to contribute 5 ppm to the pulse-pair widths (contribution from the 2 of 26 previous pulses affecting the target density that are different for the L-R pair; fast paired L-R switching very important!)
fluctuations in the mixing are estimated to introduce an additional 10 ppm to the widths

 \rightarrow Total contribution to pulse-pair width is ~12ppm (small compared to statistical jitter)

ii) Target density change during the beam pulse

Density will change on timescale corresponding to speed of sound, estimated to be $\sim 1 \mu m/ns$ (or $\sim 0.3 mm/300 ns$ during length of our beam pulse)

 \rightarrow Estimate of effective density reduction during pulse is ~0.2% for our beam conditions

Jitter contribution

1% spotsize or intensity jitter is estimated to contribute 20 ppm to the pulse-pair widths

Systematic Bias from Spotsize Asymmetry

1nm (L-R) spotsize difference could give 2 ppb ^{beam}A_{LR}(spot)!!

Note: beam rastering on target would not reduce this effect! (unless it's very fast: >1mm/100ns)

Need to measure correlations of detector widths with wire array spotsize measurements & measure spotsize asymmetries

- → actual measurements of correlation coefficients were smaller than above predictions of 2ppb/nm
- → data also showed that geometric sensitivity dominated over target density effects, since different detectors (Moller rings and LUMI) had different coefficients

Spotsize Asymmetries for Runs 1,2,3

Spotsizes: $S_X \sim S_Y \sim 1.0 \text{ mm}$ for Runs 1 and 2*with1.3mm for Run 3(with

*wire array not in for all runs; only some runs for monitoring (wires get damaged from high power beam; broke wire in Run 1)

Wire Array Spotsize Correlation Analysis

 \rightarrow < 1ppb systematic uncertainty from (L-R) Spotsize

Skew Quad, Spotsize and Beam Jitter

Beam at PR2 just upstream of target

2001: no Skew Quad

Vertical beam stability varies greatly

2002: SQ27.5 Added

PR2

(near end of A-line to ESA)

- emittance at end of Linac unstable
- horiz. emittance has large growth in A-line due to SR
- take advantage of emittance growth and use skew quad to couple x and y and give stable beam on target

Skew Quad Modeling Study

Sensitivity to position and angle jitter

Red: on axis

Blue: horizontal betatron oscillations Green: vertical betatron oscillations

Target Density Fluctuations

Typical rms pulse-pair widths for MOLLER detector is 190-200 ppm. Expected rms width from statistics is ~155 ppm. 50 ppm contribution from toroid resolution.

→ Can set limit from this study of <50 ppm contribution to MOLLER rms pulse-pair width from target density fluctuations for production runs

Pulse-pair asymmetry distributions for MOLLER, LUMI

Additional Studies for Target Density Fluctuations

Run Label	Spot Size(mm x mm)	Pump Speed(speed/nominal)
1	$1.5 \ge 1.5$	1
2	1.0 x 1.0	1
3	1.0 x 1.0	1
4	1.0 x 1.0	1
5	1.5 x 1.5	2/3
6	1.0 x 1.0	2/3
7	1.0 x 1.0	2/3
8	1.0 x 1.0	2/3
9	$1.5 \ge 1.5$	1/3
10	1.0 x 1.0	1/3

Table 5.2: List of target boiling data runs.

Skew Quad is ON for all these studies

*Includes subtraction for contributions From toroid and bpm resolutions

Asymmetries in Synchrotron Radiation

Spin-flip synchrotron radiation

 $\rightarrow A \approx 1.4 \cdot 10^{-9}$ in radiated power (for D3)

Spin-dependence of ordinary synchrotron radiation

i) transverse polarization in a transverse field **Dominant effect for E158**

 $\rightarrow A \approx 3 \cdot 10^{-5}$ in radiated power (for D3)

ii) longitudinal polarization in a transverse field

 $\rightarrow A \approx 4 \cdot 10^{-5}$ 'up-down' azymuthal asymmetry in number of radiated photons

Effects for E158

• energy asymmetry in beam on target (A-line bends)

• detector background asymmetry (spectrometer dipoles)

Spin-dependence of Ordinary Synchrotron Radiation

Transverse polarization in a transverse field

refs: Bondar and Saldin, *Nucl. Inst. Meth.* <u>195</u>, 577 (1982). Belomesthnyleh et al., *Nucl. Inst. Meth.* <u>227</u>, 173 (1984).

$$P_{\sigma} = P_o \left[\frac{7}{8} - \left(\frac{25\sqrt{3}}{12} + \eta \right) \chi + \dots \right]$$
$$P_{\pi} = P_o \left[\frac{1}{8} - \frac{5\sqrt{3}}{24} \chi + \dots \right]$$
$$P_o = \frac{2}{3} \cdot \frac{e^2 \gamma^4}{\rho^2}; \chi = \frac{3}{2} \cdot \frac{h\gamma^2}{2\pi m c \rho}$$

 σ - SR linearly polarized in bend plane

 π - SR linearly polarized perpendicular to bend plane $\eta = +1(-1)$ for spin parallel (anti-parallel) to B-field

For E158, E=48 GeV and ρ =153.4m (D3 magnet)

$$A_{P} = \frac{P_{\sigma}(\eta = +1) - P_{\sigma}(\eta = -1)}{2P_{o}} = \chi$$
$$A_{P} = 3.4 \cdot 10^{-5}$$

SR Background Effect: Estimating ^{bkgd}A_{LR}(SR)

$$^{\text{bkgd}} \mathbf{A}_{\text{LR}}(\mathbf{SR}) = f_B(SR) \cdot P_y \cdot AP_M(SR)$$

MOLLER Background from SR, $f_B(SR)$:

Target OUT data gives $f_B(SR) = (0.15 \pm 0.05)$ %. (E158 TN#44 and TN#55)

P_v is estimated from:

- i. y-corrector strengths in Linac, Aline
- ii. SLM asymmetry

iii. X Dipole asymmetry

$AP_{M}(SR)$ is estimated from:

- calculations of the SR asymmetry spectrum for $P_v = 100\%$
- calculations of the SR spectrum that reaches the MOLLER detector and energy response of the MOLLER detector for (0.5-20) MeV photons

P_y estimate from MOLLER X Dipole asymmetry

	RUN 1	RUN 2	RUN 3		
	(ppb)	(ppb)	(ppb)		
IN	-75 (39)	-35 (37)	-51 (31)		
MID	-69 (33)	+44 (31)	-47 (26)		
IN, MID	-71 (25)	+11 (24)	-49 (20)		

MOLLER xdipoles

Transverse polarization data give:

 $AP(IN) = (-3900 \pm 150) \text{ ppb}; AP(MID) = (-2800 \pm 230) \text{ ppb};$

 $AP(IN,MID) = (-3250 \pm 150) ppb$

P_v from MOLLER xdipoles

	RUN 1	RUN 2	RUN 3	Runs 1, 2, 3*
IN, MID	$(-2.2 \pm 0.8)\%$	(0.3 ± 0.7) %	$(-1.5 \pm 0.6)\%$	(-1.2 ± 0.4) %
Moller stat * errors on Araw	23.1 ppb	23.0 ppb	15.2 ppb	-

*used for combining Runs

Asymmetry in SR Flux from Spectrometer Dipoles

SR Power asymmetry for $P_v=1$ is ~34ppm.

Energy-dependence: above the critical energy (~1.5 MeV),

 $A_{SR} \approx \frac{E_{photon}}{E_{beam}}$ So, 5 MeV photons have ~100ppm asymmetry

What is MOLLER AP for SR?

Power weighting for generated SR spectrum: AP = 34 ppm + include MOLLER detector response: AP = 63 ppm

Estimate $AP_M(SR) = (63 \pm 30)$ ppm

^{bkgd} $A_{LR}(SR)$ Estimate ^{bkgd} $A_{LR}(SR) = f_B(SR) \cdot P_y \cdot AP_M(SR)$

 $f_B(SR) = (0.15 \pm 0.05)\%$ from *target out* data P_y use MOLLER dipole analysis $AP_M(SR) = (63 \pm 30)$ ppm from calculations of SR flux and asymmetry, and MOLLER energy response

^{bkgd} A_{LR}(SR) =
$$(0.0015 \pm 0.0005) \cdot (P_y) \cdot (63 \pm 30)$$
 ppm

	RUN 1	RUN 2	RUN 3	Runs 1, 2, 3
P _y	(-2.2 ± 0.8) %	(0.3 ± 0.7) %	(-1.5 ± 0.6) %	(-1.2 ± 0.4) %
$^{bkgd}A_{LR}(SR)$	(-2.1±0.8) ppb	(0.3±0.7) ppb	(-1.4±0.6) ppb	(-1.1±0.4) ppb

 \rightarrow 1ppb systematic uncertainty from SR Backgrounds

A_{PV}**Corrections for Beam Asymmetries**

$$\phi_{det} \propto \frac{I}{E\theta^4} \quad \text{where:} \quad \phi_{det}: \text{ detected flux (20 million Moller electrons/spill)} \\ (\phi_{det} \sim \sigma_{phys} \cdot L \quad \text{acceptance}) \quad \begin{array}{c} I: & \text{beam intensity} \\ E: & \text{beam energy} \\ \theta: & \text{scattering angle} \end{array}$$

If assume dependence on beam parameters is linear over the jitter range:

$$\mathcal{A}_{PV}^{meas} = P_{e} \mathcal{A}_{PV}^{phys} + \mathcal{A}_{Q} + \sum_{\xi} \alpha_{\xi} \Delta \xi \qquad \text{Contribution due to} \\ \text{`False' beam asymmetries} \\ \xi = \left\{ E, x, y, x', y' \right\} \\ \alpha_{\xi} = \frac{\partial \mathcal{A}_{PV}}{\partial \xi} \\ \left(\alpha_{E} \approx 1 \text{ ppb/ppb} \\ \alpha_{x} \approx 1 \text{ ppb/nm} \quad \alpha_{x'} \approx 2 \text{ ppb/nm} \\ \alpha_{y} \approx 1 \text{ ppb/nm} \quad \alpha_{y'} \approx 2 \text{ ppb/nm} \right)$$

(L-R) Beam Parameter Differences In Runs 1 and 2

2 Timeslots @ 120Hz \rightarrow 2 Experiments

Source feedbacks keep average beam asymmetries small, but asymmetries on each timeslot can be large!

1st-order beam asymmetry correction to A_{PV}^{meas} is (-9.7 ± 1.4)

Higher-order Beam Asymmetry Corrections

(L-R) Spotsize Difference effects described previously: 1ppb systematic
 dominant effect determined to be from time-dependence of beam parameters during 300-ns pulse

True A_{PV} correction \neq Calculated A_{PV} correction (also can have a similar effect from target density changes during 300-ns pulse)

Several tools to estimate size of effect and systematic errors

- use detector monitors which are much more sensitive to beam parameters than MOLLER monopole used for A_{PV} (ex. dipoles, OUT monopole, LUMI)
- use sensitive detector monitor measurements and beam Monte Carlo to estimate effects
- for Run 3 implemented "slice" monitors

Higher-order beam systematics for final A_{PV}^{meas} is 3 ppb

Beam Systematics Monitors

SLICE Measurements in Run 3

- SLICES readout in 10 bit ADCs
 - Q : bpm31Q (4)
 - E : bpm12X (3)
 - X : bpm41X (4)
 - Y : bpm41Y (4)
 - dX:bpm31X (4)
 - dY:bpm31Y (4)

Integration time : S1 : 0 -100 ns

- S2: 100-200 ns
- S3: 200-300 ns
- S3: 300-1000 ns

SLICE Analysis for OUT Detector in Run 3

- OUT detector at edge of Møller acceptance most sensitive to beam systematics (*only* used in A_{PV} determination for Run 3)
- Use it to set limits on the grand asymmetry

E158 Beam Summary

A_{PV} Corrections from Beam Asymmetries

Source	ΔA (ppb)	f	
Beam ¹ (1 st order)	-9.7 ± 1.4	-	
Beam (higher order)	0 ± 3	-	
Synchrotron photons	0 ± 1	0.002 ± 0.0001	
$A_{PV} = \frac{1}{P_b \cdot \varepsilon} \cdot \frac{A_{raw} - \sum \Delta A}{1 - \sum f}, P_b = 0.89 \pm 0.04,^2$ $\varepsilon (\text{linearity}) = 0.99 \pm 0.04$			

Helicity reversals from energy and half-waveplate important to minimize beam asymmetry corrections and systematics!

> **Good consistency in A_{PV} for independent energy & half-waveplate states!**

Additional Slides

"-I" Asymmetry Inverter

Let
$$|\widetilde{x}_1\rangle = M|x_1\rangle$$
 $\begin{bmatrix} x_1\\ \widetilde{x}_1'\end{bmatrix} = \begin{bmatrix} M_{11} & M_{12}\\ M_{21} & M_{22}\end{bmatrix} \begin{bmatrix} x_1\\ x_1'\end{bmatrix}$ (imaging condition: $M_{12}=0$)

Alternate running with "+I" and "-I" will give

$$\left\langle A_{\widetilde{x}_{1}} \right\rangle = 0$$

 $\left\langle A_{\widetilde{x}_{1}} \right\rangle = 0$

Setting the CP, PS Pockels Cell Voltages in Source Laser System

 Δ_1 , Δ_2 are the offsets from the CP and PS voltages determined to give circularly polarized light with a helicity filter.

Typical operating voltages for the CP and PS cells for production of right- and left-helicity light for E-158 2002 Physics Run I.

	CP Right	CP Left	PS Right	PS Left
HF Scan	$2607~\mathrm{V}$	-2732 V	-5 V	-9 V
$\lambda/2$ OUT Null IA	2574	-2765	-5	-9
$\lambda/2$ OUT Polarimeter	2582 ± 40	-2757 ± 40	-20 ± 32	-24 ± 32
$\lambda/2$ IN Null IA	2736	-2603	-105	-109
$\lambda/2$ IN Polarimeter	2667 ± 39	-2672 ± 39	-159 ± 35	-163 ± 35