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Outline
• Reminders of the standard model

• LEP & SLC precision neutral current electroweak data

• LEP & Tevatron Electroweak Data 

• Electroweak Expectations from LHC

• Summary
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standard model Parameters 
• 12 fermion masses; mixing matrix parameters (4 

quark; 4 lepton), strong phase, and the following 5 
precision parameters

Møller, APV
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note on “derived parameters”
• experimentalists view: choose the most 

precisely determined independent parameters to 
‘define’ the standard model

• derive other standard model parameters:  
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In  particular choice of renormalization scheme 
the form of the SM relation:
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Radiative corrections give sensitivity of 
precision measurements to the top and 

Higgs mass
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Z-lineshape:  MZ and ΓZ
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Neutral Current Asymmetry 
Parameters
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Z-fermion Couplings
• Neutral current parity violating observables are 

sensitive to sin2θW : asymmetries give gV/gA
� Left-right asymmetries at SLD: ALR

� Forward-backward asymmetries at LEP: AFB

� Tau polarisation measurement at LEP 

• gA is measured from cross sections: Rl

• Major focus of LEP and SLD on this sector of the 
standard model

• APV
• Møller Scattering
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SLAC Linear Collider (SLC)
e+e- Collider with one experiment: 

SLAC Linear Detector (SLD)
Centre-of-mass at Z-pole    1992-1998

• electrons were longitudinally polarised

• 300k left-handed & 240k right-handed

• polarisation precisely measured

• 73%-77% for most of the data  set  

• Primary measure: 

ALR= (NL-NR) / (NL+NR) x (1/<Polarisation>) 
= Ae =  0.1513±0.0021
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LEP 27km circumference e+e-
synchrotron storage ring collider

1989-95 LEP 1 Z-pole: 3.5M Z decays per exp’t
1995-00 LEP 2 WW: O(1000) W-pairs
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Z couples to all fermions
e.g. tau-pair production

AFB= (NF-NB)/(NF+NB)

tree-level diagram:
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Observables sensitive to couplings 
at LEP
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Z ( ) (hadrons)qq g→
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Z bb→
0,b
FB

All LEP measurements are consistent
4 A(LEP only) 0.881 0.017
3

(SLD)                       = 0.923 0.020
Agree at 1.6

(LEP+SLD)=0.889 0.013
                         (0.935 0.001 SM)3.5
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Z bb→

Z bb→
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Z bb→
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Z →e+e-; µ+µ-; τ+τ-
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+Tau Polarisation:      e e    Production τ τ− + −→
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Compare different sin2θW Measurements

Prob=3.8%
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Hadron Vacuum Polarisation [slides: Davier at Tau06’]

Define: photon vacuum 
polarization function Πγ(q2) ( ) ( )†4 2 2

em em0 ( ) ( ) 0 ( )iqxi d x e TJ x J x g q q q qµ ν µν µ ν
γ= − − ∏∫

Ward identities: only 
vacuum polarization 
modifies electron charge

(0)( )
1 ( )

s
s

αα
α

=
− ∆ ( ) 4 Re ( ) (0)s sγ γα πα  ∆ = − ∏ −∏ with:

Leptonic ∆α lep(s) calculable in QED. However, quark loops are modified by long-distance 
hadronic physics, cannot (yet) be calculated within QCD (!)

Way out: Optical 
Theorem (unitarity) ...

(0)

(0)
[ hadrons]12 Im ( ) ( )

[ ]
e es R s

e eγ
σπ
σ µ µ

+ −

+ − + −
→∏ = ≡
→

( )2(0)Born:  ( ) ( ) / ( )s s sσ σ α α=

Im[                    ]  ∝ |                   hadrons  |2
... and the subtracted 
dispersion relation of 
Πγ(q2) (analyticity)

0

Im ( )
( ) (0)

( )
sss ds

s s s i
γ

γ γ π ε

∞ ′∏
′∏ − ∏ =
′ ′ − −∫ had

0

( )( ) Re
3 ( )

s R ss ds
s s s i

αα
π ε

∞ ′′∆ = −
′ ′ − −∫



Electroweak Workshop: High Energy Experiments JLAB  Dec 2006                                     J.M.Roney, Victoria   26

Compare different sin2θW Measurements
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Standard Model Fits: Summer ‘06
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Standard Model Fits: Summer ‘06



Electroweak Workshop: High Energy Experiments JLAB  Dec 2006                                     J.M.Roney, Victoria   29

Running
of sin2θθθθW
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Z0 EW Precision sin2θW→ Mtop

precision Mz and asymmetry

measurements at LEP/SLD predicted

Mtop years prior to 

the Tevatron discovery.

An important milestone in 

EW physics: quantum field 

theory can successfully

describe weak interaction physics



Electroweak Workshop: High Energy Experiments JLAB  Dec 2006                                     J.M.Roney, Victoria   31

Predicting MHiggs



Electroweak Workshop: High Energy Experiments JLAB  Dec 2006                                     J.M.Roney, Victoria   32

Measuring sin2θW at LHC
AFB in Drell-Yan can be  used to measure sin2θW
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Measuring sin2θW at LHC
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Measuring sin2θW at LHC
Recall 
 particle production is ~constant as function of

1  rapidity, y= ln
2

 difference in rapidity of two particles is independent
of Lorentz boosts along the beam axis
At the parton level

Z

Z

E p
E p

•

 +
 − 

•

, these boosts are unknown at hadron colliders

Pseudorapidity, , is numerically close to y, but is only
dependent on the angle relative to the beam axis, 
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η
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θη   = −   
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Measuring sin2θW at LHC
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Measuring sin2θW at LHC

4

20
85.2 ( ) 97.2
at least 1 electron with 2.5 :

Electron ID eff. ~70%; jet rejection >10
allow 2nd electron up to 4.9 :
Electron ID eff. ~50%; 

cut dependent jet rejection
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ATLAS study by Sliwa,Riley,Baur reported
in hep-ph/0003275 using PYTHIA 5.7 
& JETSET 7.2
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Measuring sin2θW at LHC

Dependence of 
AFB on rapidity
at LHC and
ηηηη 

  

 cuts on electron

note: AFB from
ΖΖΖΖ−−−−>>>> 

  

 µµµµ++++µµµµ−−−− as for
|η|<2.5|η|<2.5|η|<2.5|η|<2.5 

  

 for both µµµµ
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Measuring sin2θW at LHC
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Measuring sin2θW at LHC

µµµµµµµµ
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Measuring sin2θW at LHC
Systematic uncertainties:

•PDFs: lepton acceptance & radiative
corrections

•Lepton acceptance & reco eff vs Y
(need <0.1%, PDFs an issue)

•Higher order QCD & EW corrections
•Mass Scale (AFB varies with lepton pair

mass)
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Measuring sin2θW at LHC
Systematic uncertainties:
Biggest worry is
•PDFs: lepton acceptance & radiative

corrections
Studied by PDFs (MRST, CTEQ3, CTEQ4)
stat. limited study suggests agreement
at ~1% on Afb [but these PDFs are 
correlated]. Moreover, need x~10 better 
error, to keep it small cf stat error.
(note: this is more demanding than for AFB

0.b

since the sensitivity to sin2θθθθW, b factor, is much lower.)
simultaneous fits for sin2θθθθW and PDFs? 
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Measuring sin2θW at LHC
Assume something approaching
the statistcal error can be achieved:

this is in fact complementary to the
e-e- measurement because it is sensitive
to quark and lepton couplings, not just 
lepton couplings: if LEP/SLD “discrepancy”
is from new physics AND related to 
quark vs lepton NC couplings,that new physics
should show up here as well:
this  LHC measurement is ~ QFB

had at LEP
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Measuring sin2θW at LHC

But LHC will also
measurement the
asymmetry well
above the Z
measuremests at 
several % level 
[M.Dittmar PRD 55 ’95]
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Mw @ LEP & Tevatron
• Current Mw measurements 

give EW constraints on e.g. 
MHiggs… complementary to 
sin2θW
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• Current Mtop measurements 
give  EW constraints on e.g. 
MHiggs complementary to 
sin2θW

Mtop @ Tevatron



Electroweak Workshop: High Energy Experiments JLAB  Dec 2006                                     J.M.Roney, Victoria   46

Mw@LEP and Mw&Mtop@Tevatron
• Mw & Mtop give 

complementary EW 
constraints on e.g. MHiggs

independent of

sin2θW measurements
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Mw at LEP & Tevatron
• Mw & Mtop give 

constraints on Mhiggs…
complementary to 
sin2θW
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Mw at LHC expected
• Mw & Mtop give constraints on Mhiggs…

complementary to sin2θW

• Uncertainties are expected to be significantly 
smaller than LEP & Tevatron values 
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Mw at LHC 

from M. Malberi
ICHEP ‘06
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Mw@Tevatron: reality check for LHC
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Mw at LHC 
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Mw at LHC 
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Mw at LHC 
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Mw at LHC 
Uncertainty on Mass will be dominated
by systematics, many of which (such
as PDFs,energy scale and resolution)
will be determined and themselves 
limited by statistics.
The GOAL of 15MeV/c2 looks very
challenging at this point, but achieving
~20MeV/c2 can likely be reached
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Top production at the LHC
~90%~90%

~10%~10%

1. 1. tttt is an essential process for is an essential process for 
commissioning detector and toolscommissioning detector and tools
•• jet energy scale, bjet energy scale, b--tagging calibrationtagging calibration

Production (diff.)Production (diff.)
crosscross--sectionsection

t masst mass

W, t W, t helicitieshelicities

Decay modesDecay modes

Light jet Light jet 
energy scaleenergy scale

bb--taggingtagging

bb--taggingtagging

2. 2. tttt is a fundamental process for is a fundamental process for 
electroweak (precision) measurementselectroweak (precision) measurements
•• the top quark is interesting per se (mthe top quark is interesting per se (mtt~190m~190mpp!)!)
•• mmtt, , σσtt, q, qtt, ,  VVtbtb ,, σσtttt, , BRBRtt, , tttt, , pdfspdfs
•• mmtt can greatly help in the indirect constraint can greatly help in the indirect constraint 

of the Standard Model (and new physics !)of the Standard Model (and new physics !)

~100%~100%

3. 3. tttt is a fundamental process for the is a fundamental process for the 
direct search of new physicsdirect search of new physics
•• both production and decay: both production and decay: XX→→tttt, , tt→→XX, , ttXttX
•• larger couplings with Higgs larger couplings with Higgs ––new physics?new physics?--
•• top is background to many search channelstop is background to many search channels

The LHC will be a topThe LHC will be a top--factory !factory !
•• σσNLONLO~830 ~830 pbpb : : 2 2 tttt events per second !events per second !
•• more than 10 million more than 10 million tttt events expected per yearevents expected per year
•• first physics in 2008 !first physics in 2008 !

from R. Chierici
ICHEP ‘06
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~4.1~4.1~4.0~4.0~0.7~0.7~0.1~0.1via crossvia cross--sectionsection

~1.1~1.1~0.6~0.6~1.0~1.0~0.2~0.2bqqbbqqbℓℓνν

~1.5~1.5~1.4~1.4~0.5~0.5~0.5~0.5exclusive exclusive J/J/ψψ decaysdecays

~4.2~4.2~3.5~3.5~2.3~2.3~0.2~0.2bqqbqqbqqbqq

~1.2~1.2~0.3~0.3~1.0~1.0~0.5~0.5bbℓℓννbbℓℓνν
~1.7~1.7~1.4~1.4~0.9~0.9~0.2~0.2bqqbbqqbℓℓνν high high ppTT

δδmmtt

(GeV/c(GeV/c22))
δδmmtt(s(systyst. . thth.).)

(GeV/c(GeV/c22) ) (2)(2)

δδmmtt(s(systyst. . instrinstr.).)
(GeV/c(GeV/c22) ) (1)(1)

δδmmtt(s(stattat))
(GeV/c(GeV/c22))

The key points for reducing the error on The key points for reducing the error on mmtt will be:will be:
•• reduce systematic by using data to calibrate our measurements anreduce systematic by using data to calibrate our measurements and to d to 

constrain our knowledge on simulationconstrain our knowledge on simulation
•• combine analyses with a different systematic breakdown   combine analyses with a different systematic breakdown   

→→ many instrumental systematic errors are analysis correlatedmany instrumental systematic errors are analysis correlated
→→ most theory systematic errors are also ATLAS/CMS correlatedmost theory systematic errors are also ATLAS/CMS correlated

 ⇒ ⇒ 1 GeV/c1 GeV/c22 error is anyway in reach !error is anyway in reach !

(1)  jet and lepton energy scales, b(1)  jet and lepton energy scales, b--tagging, luminosity,tagging, luminosity,……
(2) radiation, fragmentation, MB/UE,(2) radiation, fragmentation, MB/UE,……

Estimated sensitivities as of today:Estimated sensitivities as of today:

LHC mt error breakdown from R. Chierici
ICHEP ‘06
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mmHH

SUSY mass scaleSUSY mass scale

MSSM MSSM ≈≈ SM SM 

•• The experiments have now presented their realistic potential onThe experiments have now presented their realistic potential on top physics top physics 
measurements. Many ideas around on how to determine the top mmeasurements. Many ideas around on how to determine the top mass.ass.

•• By cBy combining all analyses, an estimation of ombining all analyses, an estimation of δδmmtt~1GeV/c~1GeV/c22 is realistic and totally   is realistic and totally   
dominated by systematic error.  dominated by systematic error.  

→→ Conservatively estimated, especially when due to theoretical unConservatively estimated, especially when due to theoretical uncertaintiescertainties
→→ The use of data for understanding detector and simulation will The use of data for understanding detector and simulation will be essentialbe essential

•• A precise measurement of the top quark mass willA precise measurement of the top quark mass will
allow to:allow to:

→→ improve detector understandingimprove detector understanding
→→ constrain standard physicsconstrain standard physics
→→ look for presence of new physicslook for presence of new physics
→→ constrain new physics !constrain new physics !

Impact of LHC W and Top measurements

Assuming Assuming δδmmWW=15 MeV/c=15 MeV/c22 and and also also ∆α∆αhadhad=0.00012=0.00012

→→ ((δδmmHH/m/mH H ≈≈ 25%)25%)

⇒⇒ Chances of ruling out the SMChances of ruling out the SM……

from R. Chierici
ICHEP ‘06
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Complementarity
of sin2θW
Measurement
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LHC expected to measure MHiggs
Complementarity with
precision EW: 
predict MHiggs with precision, 
just as Mtop was predicted; 
if Mtop not where Z0 analyses
said it should be…
then something else is in those loops

Similarly, if EW predictions of MHiggs are not verified by
LHC measurement… something very exciting is up 
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Møller sensitivity to MHiggs

from E158
PRL 95(2005) 
081601-1-5
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Møller sensitivity to MHiggs

for projected
error of 
2.5E-4
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Møller sensitivity to MHiggs

for projected
error of 
2.5E-4
and no 
ααααhad

(5)(Mz)
error
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Møller sensitivity to MHiggs

from E158
PRL 95(2005) 
081601-1-5
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Møller sensitivity to MHiggs

for projected
error of 
2.5E-4
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Møller sensitivity to MHiggs

for projected
error of 
2.5E-4

but…new lepton
measurements
should be at
least 0.00021
to have a 
big impact, beyond
testing for running
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Additional (obvious) note on 
complementarity Møller and 

High Energy Measurements of sin2θW

As experimentalists
we want to verify
the running as
precisely as possible,
new physics could lie
in failure of this
running
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Summary
• Z0-pole measurements from LEP and SLC provide the 

highest precision measurements of sin2θW but still make 
one uncomfortable:

Success of predicting top mass; yet there is a chance that 
the AFB

0,b is telling us something about new physics

• New precision measurements in leptonic-hadronic
couplings will come with AFB in Drell-Yan at the LHC

• Additional precision measurement in purely leptonic
couplings will be very useful to reinforce the LEP and 
SLC leptonic asymmetry data.
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Summary
• Additionally, very high energy LHC asymmetries and c 

Møller measurements complementary to investigate 
running of a possible new effect

• Want to confront Higgs discovery at LHC with highest 
precision EW data possible: is it SM Higgs?

• LHC expected to give higher precision 

top and W masses

• Much more precise sin2θW would be very useful
to help sort out what new physics might be at the LHC 
(but need improved ∆α(5)

had(Mz) to get there!) 
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Additional Slides
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f f

f
Vf 3

Bulk of corrections to the couplings at the Z-pole absorbed into 
complex form-factors:  for overall scale and  for the on-shell
EW mixing angle, these give complex effective couplings:
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