A First Look at Systematic Uncertainties in a 12 GeV Moller Experiment

J. Birchall – University of Manitoba D. Mack – Jefferson Lab presented by J. Martin – University of Winnipeg

detector

electron

target (LH2)

parity-reversed experiment

These experiments are the same to 10⁻⁷

must have excellent control of all "helicity-correlated" beam properties (see G. Cates' talk)

Sensitivity to Helicity-Correlated Effects

- This is why most parity-violation experiments have some degree of symmetry in the detector.
- There is a limit to how much symmetry in the detector can do for us.
- Jim did a Monte Carlo simulation to give a first look at these issues (based on experience from G0 and Qweak sims)

Parameters for the simulation, from Dave Mack

Parameter	12 GeV JLab
E	12 GeV
E'	3-6 GeV
< <i>Q</i> ² >	0.008 (GeV/c) ²
θ_{lab}	0.53° - 0.92°
Current	100 µA
Target Length	150 cm
Collimator	5 m downstream from target
False Asymmetry	< 10 ⁻⁹ from each source

Systematic Error Simulations

Sensitivity to:

Motion of beam on target

Beam breathing

Angle of beam on target

Energy modulation

No magnet!

A Simple Collimator (NOT optimized, diagram NOT to scale)

Detector:

- A plane 10 m downstream from centre of target, uniform response, that captures Moller electrons that passed through the collimator
- Find variation of event rate with position, direction, energy of beam on target...

Moller electrons at detector plane (no magnet!)

Angle of scatter from target, not weighted by rate

Moller Electrons, weighted distributions

Systematic Errors

Beam Position: $x^{\pm} = x_0 \pm \delta x$, with rate $\sim 1 + ax^2$, a = -0.16 cm⁻²

False asymmetry, $\epsilon = 2ax_0\delta x$

Beam Breathing: integrate rate over beamspot, keeping beam current fixed

Rate
$$\sim \frac{\int_0^{r_0} 2\pi r (1+ar^2) dr}{\int_0^{r_0} 2\pi r dr} = 1 + \frac{ar_0^2}{2}$$

False asymmetry, $\epsilon = ar_0 \delta r$, $r^{\pm} = r_0 \pm \delta r$

Angle modulation: for rate $\sim 1 + b\theta^2$ and $\theta^{\pm} = \theta_0 \pm \delta\theta$

False asymmetry, $\epsilon = 2b\theta_0\delta\theta$, $b = -10 \text{ deg}^{-2}$

Energy modulation: $\frac{1}{\sigma} \frac{d\sigma}{dE} = -0.046 \text{ GeV}^{-1}, \ E^{\pm} = E_0 \pm \delta E$ False asymmetry, $\epsilon = -0.046 \ \delta E$

Beam Requirements

Cause of error	Condition for ε < 10 ⁻⁹	Example
Position modulation $x^{\pm} = x_0 \pm \delta x$	$x_{\rm o}\delta x < 3.1 \times 10^{-9} {\rm cm}^2$	$\delta x = 20 \text{ nm}$ $x_0 = 16 \mu \text{m}$
Beam breathing $r^{\pm} = r_{o} \pm \delta r$	$r_{\rm o}\delta r < 6.3 \times 10^{-9} {\rm cm}^2$	$r_{\rm o} = 75 \ \mu { m m}$ $\delta r = 8 \ { m nm}$
Angle modulation $\theta^{\pm} = \theta_{o} \pm \delta \theta$	$\theta_0 \delta \theta < 5 \times 10^{-11} \text{ deg}^2$	$\theta_{o} = 60 \ \mu rad$ $\delta \theta = 0.3 \ nrad$
Energy modulation $E^{\pm} = E_{o} \pm \delta E$	δE < 22 eV	δE < 22 eV

Conclusion

- Based on this work
 - beam requirements are not "crazy", by JLab standards.