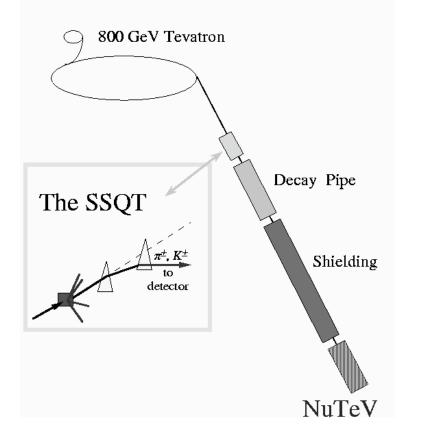
Current Status of the NuTeV Experiment

Beyond the Standard Model?? "QCD Effects"??

NuTeV - charged, neutral currents induced by neutrinos New measurement of Weinberg angle


Possible "New Physics" beyond the Standard Model? Normal ("QCD") Explanations of NuTeV Anomaly?

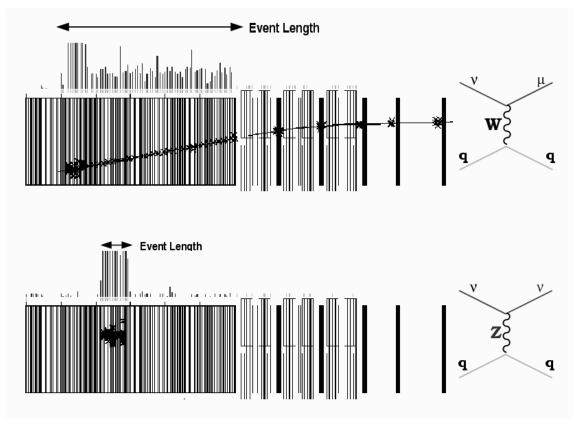
> radiative corrections parton Charge Symmetry Violation strange quark momentum asymmetry nuclear, shadowing corrections

Tim Londergan Nuclear Theory Center, Indiana University JLab Electroweak Workshop Dec 11-13, 2006

Supported by NSF PHY- 0555232 With Tony Thomas (JLab), Dave Murdock (Tenn Tech)

The NuTeV Experiment: charged, neutral currents from neutrino DIS

800 GeV p at FNAL produce pi, K from interactions in BeO target;
Decay of charged pi, K produces neutrinos, antineutrinos;
Almost pure muon neutrinos;
(small v_e contamination from K_{e3} decay)
Only neutrinos penetrate shielding


Dipoles select sign of charged meson:

- Determine nu/nubar type
- remove ν_e from K_L

NuTeV: Rochester/Columbia/FNAL/Cincinnati/Kansas State/Northwestern/ Oregon/Pittsburgh neutrino collaboration G. Zeller etal, PRL **88**, 091802 (02); PR D**65**, 111103 (02)

Separate Neutral, Charged-Current Events

NuTeV Detector: 18 m long, 690-ton steel scintillator; Steel plates interspersed with liq scintillator, drift chambers

Charged current:

Track through several plates Large visible energy deposit

NuTeV event selection:

- Large E in calorimeter $20 < E_{Vis} < 180 \text{ GeV}$
- event vertex in fiducial volume

Neutral current: Short visible track Large missing energy

NuTeV Events:

- 1.62 million ν
- 351,000 $\overline{\nu}$

The Paschos-Wolfenstein Ratio:

Neutrino Total Cross Sections on Isoscalar Target:

$$\begin{split} R^{\nu} &\equiv \frac{\sigma \langle \nu \, N_0 \longrightarrow \nu \, X \rangle}{\sigma \langle \nu \, N_0 \longrightarrow \mu \, X \rangle} = g_L^2 + r \, g_R^2 \\ R^{\overline{\nu}} &\equiv \frac{\sigma \langle \overline{\nu} \, N_0 \longrightarrow \overline{\nu} \, X \rangle}{\sigma \langle \overline{\nu} \, N_0 \longrightarrow \overline{\mu} \, X \rangle} = g_L^2 + \frac{1}{r} \, g_R^2 \end{split} \qquad r \equiv \frac{\sigma \langle \overline{\nu} \, N_0 \longrightarrow \overline{\mu} \, X \rangle}{\sigma \langle \nu \, N_0 \longrightarrow \overline{\mu} \, X \rangle} \end{split}$$

 $R^{
u}$ is more sensitive to $\sin^2 heta_W$

NuTeV measure both $R^{\nu}, R^{\overline{\nu}}$

Paschos & Wolfenstein (PR D7, 91 (73)):
 Independent measurement of Weinberg angle, using ratio of total
 X-sections for neutrinos, antineutrinos on isoscalar target:
 PW ratio → minimizes sensitivity to PDFs, higher-order corrections

$$R^{PW} \equiv \frac{R^{\nu} - r R^{\overline{\nu}}}{1 - r} = \frac{\sigma \langle \nu N_0 \longrightarrow \nu X \rangle - \sigma \langle \overline{\nu} N_0 \longrightarrow \overline{\nu} X \rangle}{\sigma \langle \nu N_0 \longrightarrow \mu X \rangle - \sigma \langle \overline{\nu} N_0 \longrightarrow \overline{\mu} X \rangle} = \frac{1}{2} - \sin^2 \theta_W$$

The Paschos-Wolfenstein Ratio:

$$R^{PW} \equiv \frac{R^{\nu} - r R^{\overline{\nu}}}{1 - r} = \frac{\sigma \langle \nu N_0 \longrightarrow \nu X \rangle - \sigma \langle \overline{\nu} N_0 \longrightarrow \overline{\nu} X \rangle}{\sigma \langle \nu N_0 \longrightarrow \mu X \rangle - \sigma \langle \overline{\nu} N_0 \longrightarrow \overline{\mu} X \rangle} = \frac{1}{2} - \sin^2 \theta_W$$

PW Ratio depends on the following assumptions:

- Isoscalar target (N=Z)
- include only light (u, d) quarks
- neglect charm quark mass
- assume isospin symmetry for PDFs
- no nuclear effects (parton shadowing, EMC,)
- no contributions outside Standard Model

NuTeV Determination of Weinberg Angle:

• Construct ratios $R^{\nu}, R^{\overline{\nu}}$ Individual ratios less dependent on overall normalization Very precise charged/neutral current ratios: Different cuts, acceptance: don't construct PW ratio directly

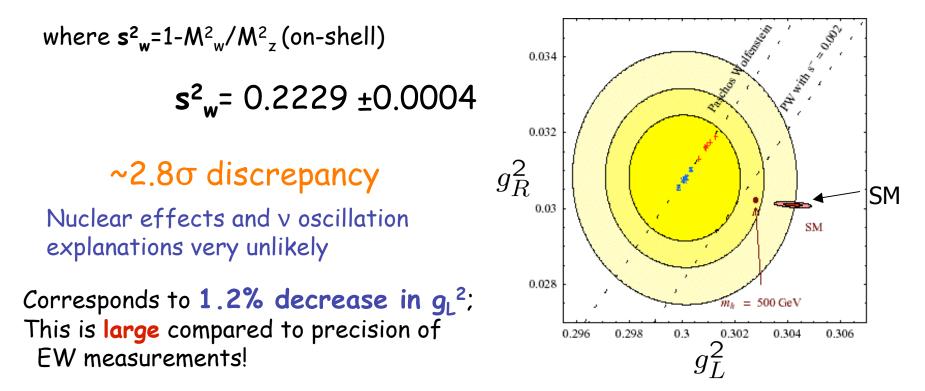
• R^{ν} : depends strongly on Weinberg angle

• $R^{\overline{\nu}}$: weak dependence on Weinberg angle

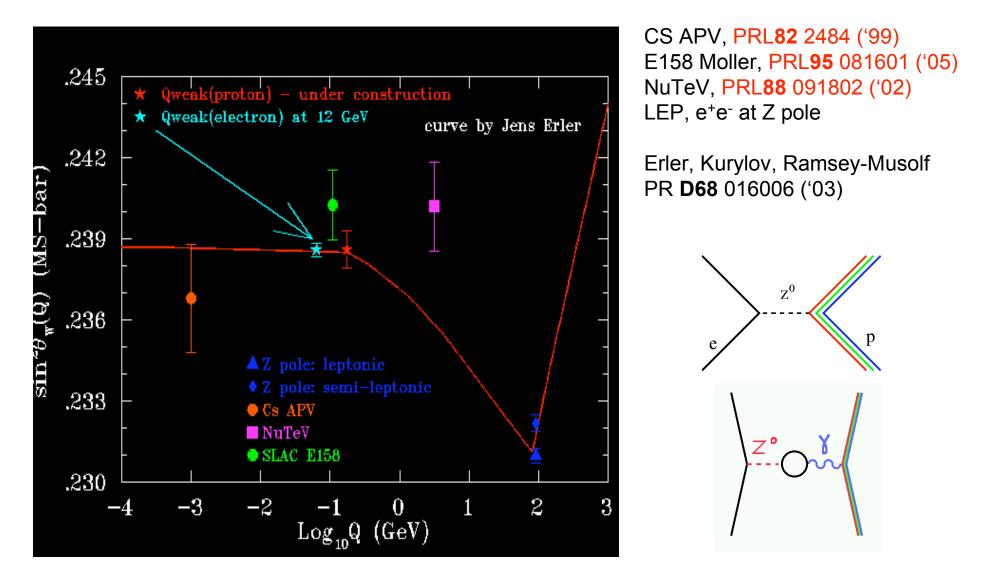
 $R^{\overline{\nu}} = 0.4050 \pm 0.0027 \, [SM : 0.4066] - agree with SM$

These ratios lead to a NuTeV value for the Weinberg angle:

$$s_W^2 = 0.2276 \pm 0.0013_{stat} \pm 0.0006_{syst} \pm 0.0006_{th}$$
$$-.00003[M_t - 175] + .00032 \ln[M_H/100]$$


The NuTeV result is ~ **3σ above the very precise value** (from EW processes at LEP)

$$s_W^2 = 0.2229 \pm 0.0004$$
 $\delta s_W^2 = +0.0046$


NuTeV Result: 30 Discrepancy from LEP value

NuTeV work at LO in QCD (with improvements) and find

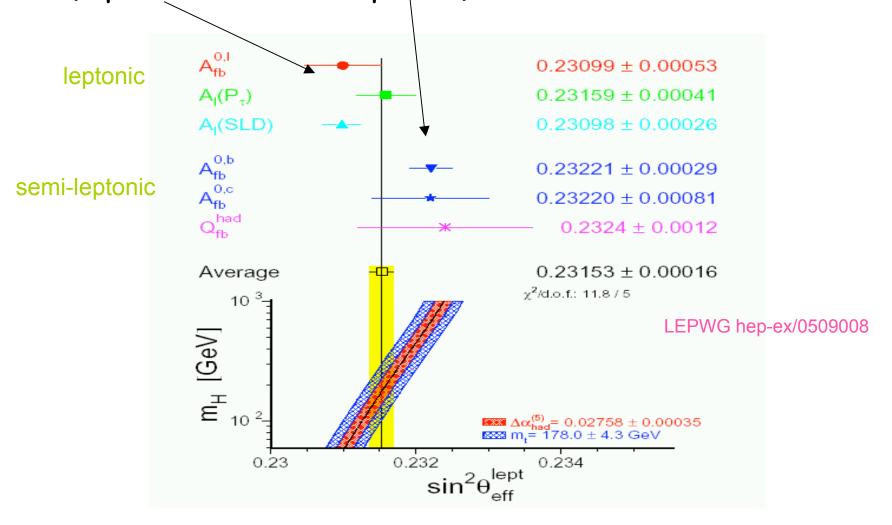
s²_w(NuTeV)=0.2276±0.0013_{stat} ±0.0006_{syst} ±0.0006_{th} -0.00003(M_t/GeV-175)+0.00032 lnM_H/100GeV

Running of the Weak Mixing Angle

The Cs APV, Z pole and (particularly) SLAC E158 clearly demonstrate the running. The NuTeV result is an "outlier".

"New Physics" explanation for NuTeV?

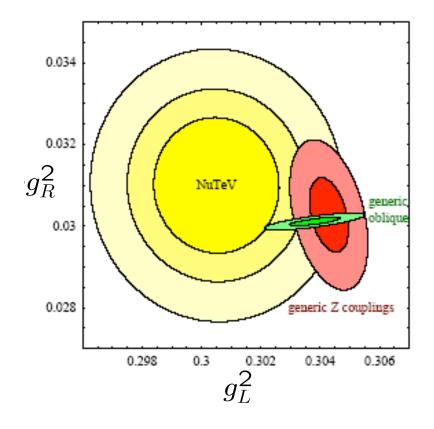
NuTeV _____


The problem: extremely precise EW data supports SM!

- Mass, width of Z, W
- X-sections, branching ratios at Z peak [LEP, SLD]
- LR and FB asymmetries in e⁺e⁻ scattering
- new particles must satisfy all these constraints
- EW constraints ~ 0.1% level [NuTeV ~ 1.2%]
- "new physics" hard to satisfy EW constraints!

	Measurement	Pull	(O ^{meas} –O ^{fit})/σ ^{meas} -3 -2 -1 0 1 2 3
$\Delta \alpha_{\rm had}^{(5)}(m_Z)$	0.02761 ± 0.00036	-0.24	
	91.1875 ± 0.0021	0.00	
Γ _z [GeV]	2.4952 ± 0.0023	-0.41	
σ_{had}^0 [nb]	41.540 ± 0.037	1.63	
R _I	20.767 ± 0.025	1.04	
A ^{0,I} fb	0.01714 ± 0.00095	0.68	
A _I (P _T)	0.1465 ± 0.0032	-0.55	
R _b	0.21644 ± 0.00065	1.01	
R _c	0.1718 ± 0.0031	-0.15	
A ^{0,b}	0.0995 ± 0.0017	-2.62	
A ^{0,b} A ^{0,c} _{fb}	0.0713 ± 0.0036	-0.84	
A _b	0.922 ± 0.020	-0.64	
A _c	0.670 ± 0.026	0.06	
A _I (SLD)	0.1513 ± 0.0021	1.46	
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.87	
m _w [GeV]	80.449 ± 0.034	1.62	
Γ _w [GeV]	2.136 ± 0.069	0.62	
m _t [GeV]	174.3 ± 5.1	0.00	
$\sin^2 \theta_W(vN)$	0.2277 ± 0.0016	3.00	
Q _W (Cs)	-72.18±0.46	1.52	
			-3 -2 -1 0 1 2 3

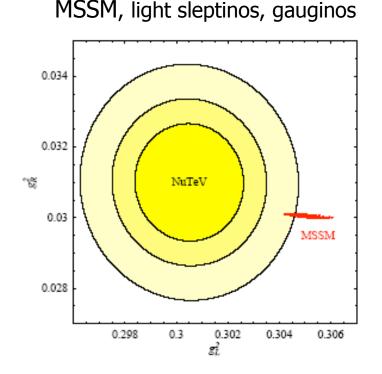
Precision (Inconsistent?) Determinations of $sin^2\theta_W$


• Two precise measurements of $\sin^2\theta_W$ at the Z pole (leptonic and semi-leptonic) are inconsistent.

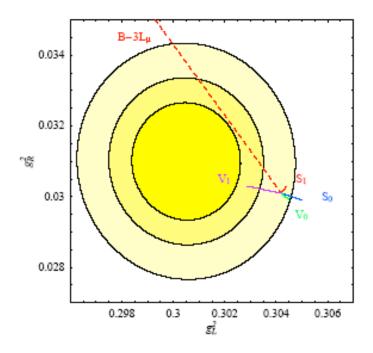
Physics Outside the Standard Model? Attempts to explain NuTeV with "new physics"

- Davidson et al [J High E Phys 2, 37 ('02)] considered various scenarios (oblique corrections, extra Z's, SUSY loops, leptoquarks) - very difficult to explain NuTeV result
- Kurylov, Ramsey-Musolf, Erler [NP B667, 321 ('03)] detailed analysis of SUSY contributions to NuTeV: SUSY loops cannot explain NuTeV R-parity violating (RPV) contributions → in principle could explain NuTeV anomaly in practice, ruled out by other precision EW data

"Designer Particles" I: physics beyond Standard Model delicately adjust to fit all existing data + NuTeV



- oblique corrections [high mass scale, couples only to vector bosons]: parameters constrained by EW data - can't fit NuTeV
- extra Z' (mixed with Z) doesn't fix; strongly constrained by LEP/SLD (also by latest muon g-2)

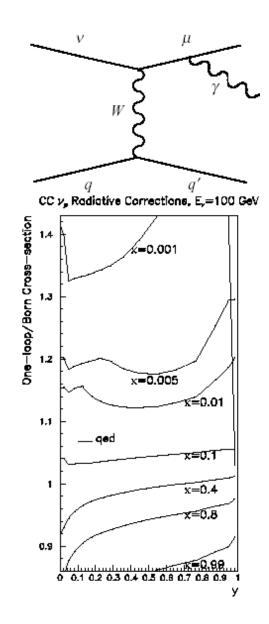

[Davidson *etal,* J HE Phys **2**, 37 (2002)]

"Designer Particles" II: More Attempts to fit NuTeV

- minimal SUSY loops No most have wrong sign; others violate existing constraints
- Leptoquarks (bosons that couple to leptons & quarks): very carefully tuned mass splittings still possible - could be tested at LHC [Davidson etal, J HE Phys 2, 37 (2002)]
- Unmixed extra Z' might help reduce NuTeV anomaly (fine tuning)

Leptoquark (solid); extra gauge bosons (red)

Summary, "New Physics" Contributions to NuTeV: Contributions outside Standard Model?


- Difficult to achieve
- Strong constraints from extremely precise LEP/SLD results
- Requires very delicate choice of particles & properties

EW Radiative Corrections

- EM radiative corrections, process specific to NuTeV, are large
 - Bremsstrahlung from final state lepton in CC
 - \rightarrow significant correction.
 - Not present in NC (promotes CC events to higher y so they pass energy cut)
 - {δR ^v, δR^{v̄}, δsin²θ_W} ≈
 {+.0074,+.0109,-.0030}

D. Yu. Bardin and V. A. Dokuchaeva, JINR-E2-86-260, (1986)

- New calculation of this effect (Diener, Dittmaier, Hollik PR D69, 073005 (04))
 - NuTeV data currently under re-analysis
 - Corrections likely larger than NuTeV estimate

Isospin Violation and the NuTeV Experiment

Isospin violation in PDFs will contribute to NuTeV exp't

PW Correction \rightarrow valence parton charge symmetry violation (CSV) parton charge symmetry: $u_V \leftrightarrow d_V$, and $p \leftrightarrow n$.

CS: (rotation of 180° about "2" axis in isospin space)

NuTeV: slight dependence on sea quark CSV, but dominated by valence CSV

Origins of parton CSV; convenient to ascribe to \rightarrow o quark mass difference: $\delta m \equiv m_d - m_u \sim 4 \text{ MeV}$

o Electromagnetic contributions: most important EM effect: n-p mass difference $\delta M \equiv M_n - M_p = 1.3$ MeV

Isospin Violating Corrections to PW Ratio:

Changes in PW ratio from isospin violating PDFs:

$$\begin{split} \delta R_{CSV}^{PW} &= \delta \left(\sin^2 \theta_W \right) = \frac{\delta U_V - \delta D_V}{2(U_V + D_V)} \left[1 - \frac{7}{3} \sin^2 \theta_W + \frac{4\alpha_s}{9\pi} \left(\frac{1}{2} - \sin^2 \theta_W \right) \right] \\ \delta R_{CSV}^{PW} &\propto \frac{U_V^p + U_V^n - \left(D_V^p + D_V^n \right)}{2(U_V + D_V)} \\ \delta U_V &\equiv \int_0^1 x \left[u_V^p(x) - d_V^n(x) \right] dx; \quad \delta D_V \equiv \int_0^1 x \left[d_V^p(x) - u_V^n(x) \right] dx \end{split}$$

Isospin violating PW Correction → depends completely on valence CSV momentum difference (2nd moment of valence CSV PDFs)

Quark models suggest → These quantities may be reasonably model-independent Londergan & Thomas, PR **D67**, 111901 ('03)

Models for CSV in Valence PDFs

Construct quark models that reproduce qualitative features of PDFs

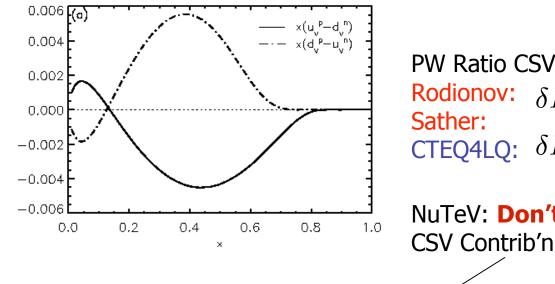
Examine their behavior under charge symmetry operations

$$\delta m \equiv m_d - m_u \approx 4 \ MeV$$

$$\delta M = M_n - M_p = 1.3 \ MeV$$

$$\delta q_{\mathsf{V}} \approx \frac{\partial q_{\mathsf{V}}}{\partial m} \delta m + \frac{\partial q_{\mathsf{V}}}{\partial M} \delta M$$

Sather: Analytic Quark Model Approximation for Valence Parton CSV.


$$\delta d_{\mathsf{V}}(x) = d_{\mathsf{V}}^{p}(x) - u_{\mathsf{V}}^{n}(x) = -\frac{\delta M}{M} \frac{d}{dx} [x d_{\mathsf{V}}(x)] - \frac{\delta m}{M} \frac{d}{dx} d_{\mathsf{V}}(x)$$

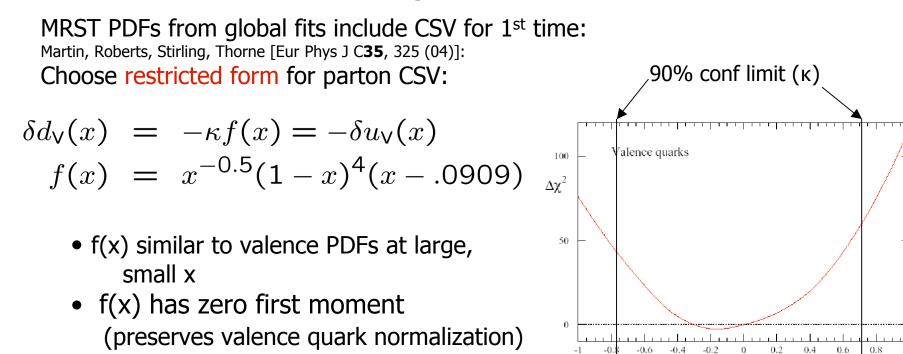
$$\delta u_{\mathsf{V}}(x) = u_{\mathsf{V}}^{p}(x) - d_{\mathsf{V}}^{n}(x) = \frac{\delta M}{M} \left(-\frac{d}{dx} [x u_{\mathsf{V}}(x)] + \frac{d}{dx} u_{\mathsf{V}}(x) \right)$$

 $\delta D_{\mathsf{V}} = \langle x \delta d_{\mathsf{V}}(x) \rangle = \frac{\delta M}{M} D_{\mathsf{V}} + \frac{\delta m}{M} > 0$ $\delta U_{\mathsf{V}} = \langle x \delta u_{\mathsf{V}}(x) \rangle = \frac{\delta M}{M} (U_{\mathsf{V}} - 2) < 0$

Leads to analytic results (~ model-independent)

Quark models → predict sign, magnitude for 2nd moment of valence parton CSV

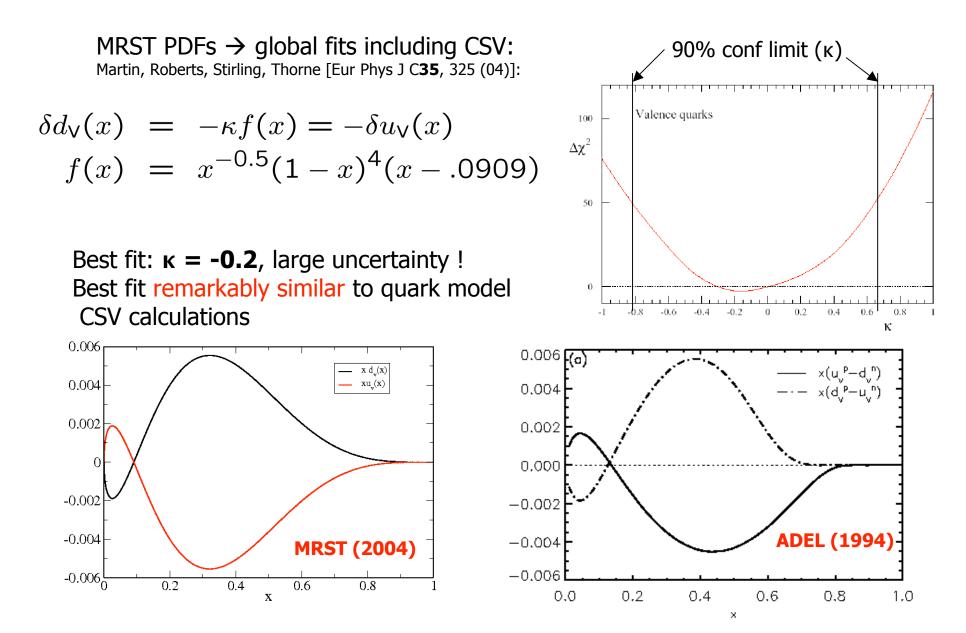
CSV Contribution to NuTeV Result:



PW Ratio CSV Corr'n using Sather: Rodionov: $\delta R^{PW} = -.0021$ Sather: CTEQ4LQ: $\delta R^{PW} = -.0020$ 40% decrease in anomaly!

NuTeV: **Don't evaluate** PW Ratio! CSV Contrib'n to NuTeV result:

- Calculate parton CSV at low (quark model) momentum scale
- Evolve up to Q² of NuTeV exp't (20 GeV²)
- Evaluate with NuTeV functional $\delta R_{CSV}^{NT} \sim -0.0014$ in anomaly


Phenomenological Parton CSV PDFs

• requires δd_v , δu_v equal & opposite

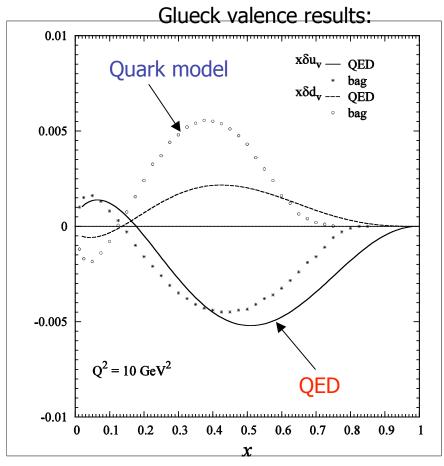
Very shallow minimum found in global fit to HE data Best fit: $\kappa = -0.2$, large uncertainty ! 90% confidence limit: $-0.8 \le \kappa \le +0.65$

Phenomenological Parton CSV PDFs

"QED Splitting": a New Source of Isospin Violation

MRST, Eur.Phys.J. **39**, 155 (05); Glueck, Jimenez-Delgado, Reya, PRL**95**, 022002 (05)

"QED evolution", quark radiates photon Evolve in Q²


- correct to lowest order in α_{QED}
- qualitatively similar to quark model CSV
- QED varied while QCD force "fixed"
- contributes even if $m_u = m_d$ and $M_n = M_p$
- evolve from m_q to Q
- for $m_q^2 < q^2 < \tilde{Q}_0^2$, Glueck "freeze" quark PDFs
- $(Q_0^2 = \text{starting scale for QCD evolution})$

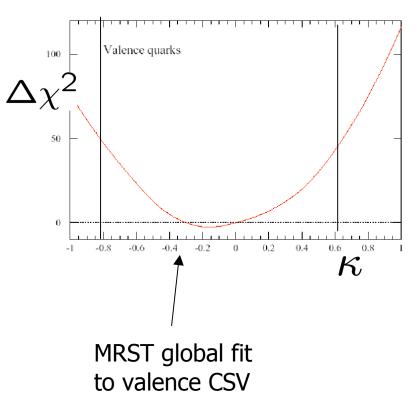
CSV Effects arising from "QED Splitting":

MRST, Eur.Phys.J. **39**, 155 (05); Glueck etal, PRL**95**, 022002 (05)

$$\frac{d}{d \ln Q^2} \, \delta q_{\mathsf{V}}(x, Q^2) = \pm \frac{\alpha}{2\pi} P \otimes q_{\mathsf{V}}$$
$$P(z) = (e_u^2 - e_d^2) \left(\frac{1+z^2}{1-z}\right)_+$$

- add to quark model CSV term →
- increase CSV ~ factor 2
- MRST incorporate QED splitting with PDFs in global fit to high energy data
- Glueck: CSV effects relatively large at high x

Summary, CSV Effects on Weinberg angle


Phenomenology: MRST global fit \rightarrow limits valence CSV -0.8 $\leq \kappa \leq +0.65$ $\kappa = -0.6 \rightarrow$ remove 100% of NuTeV anomaly! $\kappa = +0.6 \rightarrow$ anomaly twice as large!

Theoretical estimates:

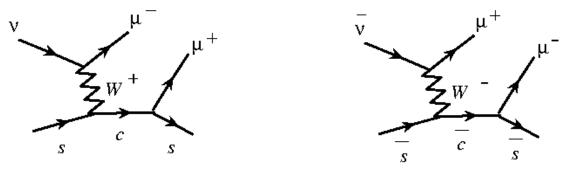
- quark model remove ~1/3 anomaly
- "QED splitting" remove ~1/3
- (phenomenology includes both effects)

→ at current limits, CSV could produce observable effects

(~ 5-6%) (or more?) in certain reactions

90% confidence limits:

Strange Quark Contributions to PW Ratio:

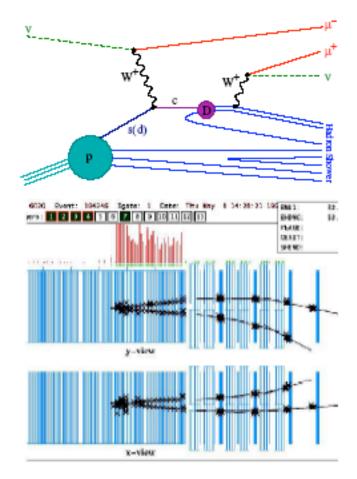

PW contribution from strange quarks:

$$\delta R_S^{PW} = \delta \left(\sin^2 \theta_W \right) \approx \frac{-S^-}{U_V + D_V} \left[2\Delta_d^2 + 3(\Delta_d^2 + \Delta_u^2)\epsilon_c \right]$$

$$S^- \equiv \int_0^1 x [s(x) - \bar{s}(x)] \, dx \qquad \text{s-sbar momentum asymmetry}$$

Strange quark normalization: constrained $\langle s - \overline{s} \rangle = 0$ (no net strangeness in nucleon)

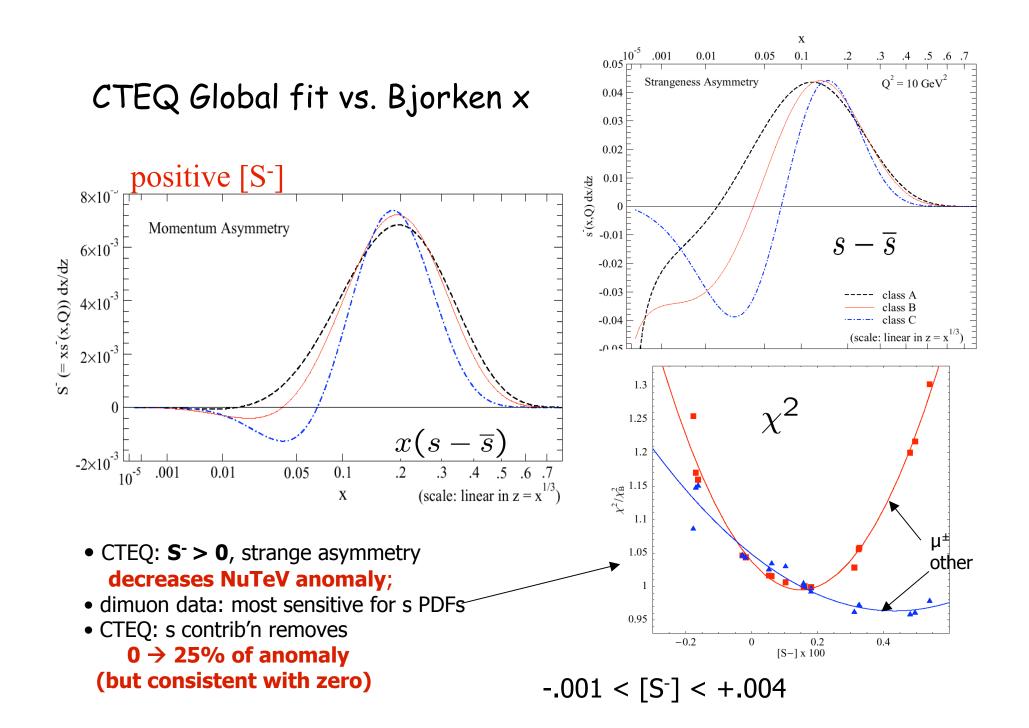
If s quarks carry more momentum than sbar \implies decrease anomaly


Determination of s, sbar quark PDFs: **Opposite sign dimuons from neutrinos**

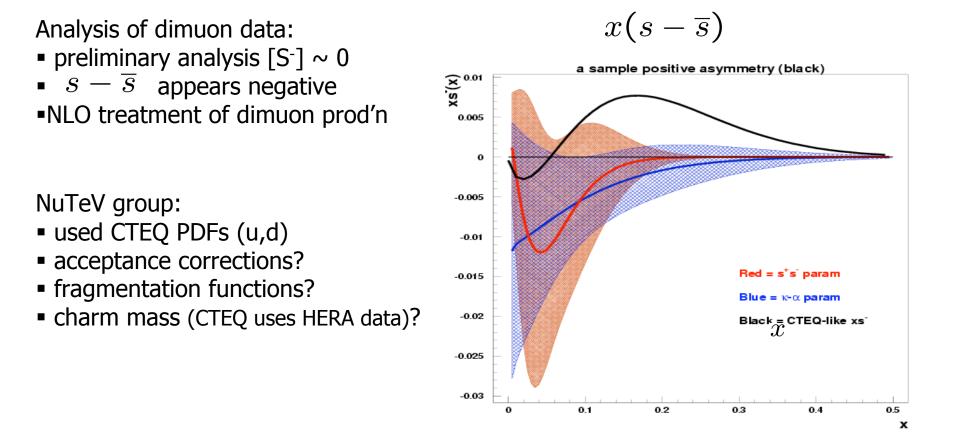
- CCFR: charge of faster muon determines neutrino or antineutrino;
- most precise way to determine s, sbar PDFs → CCFR, NuTeV

Charm Production \Rightarrow Dimuons

- CC νN makes charm
 - \rightarrow fragmentation
 - \longrightarrow semileptonic decay to μ
- Very clear signature
- Direct look at strange sea
- With sign selected beam NuTeV can look at s(x), s(x) independently
- Can also measure charm mass

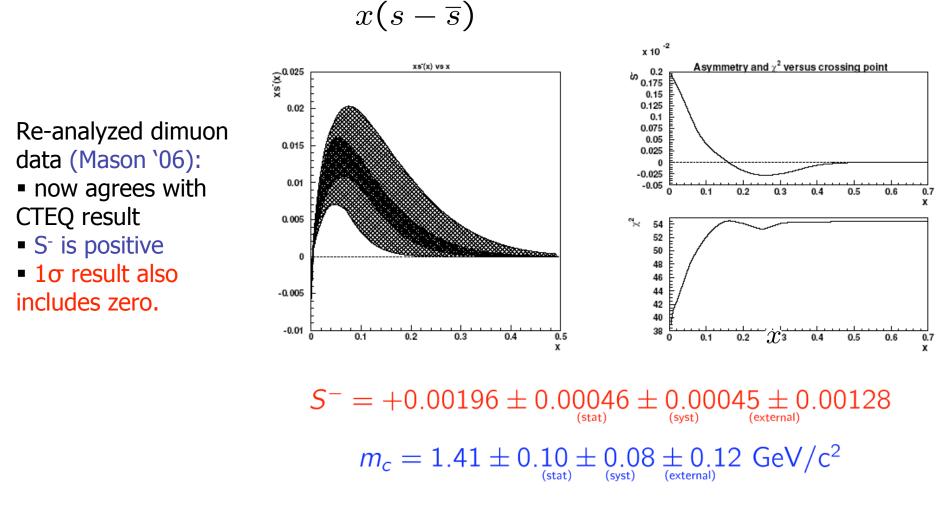


Analyses of s quark momentum asymmetry

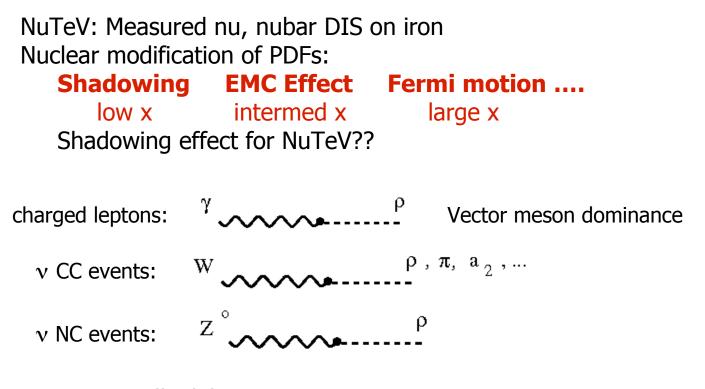

Two extensive fits of s quark distributions.

CTEQ: [Kretzer etal, PRL 93, 041802 (04), Olness etal, Eur Phys J C40, 145 (05)]

- Global analysis of parton PDFs → CTEQ6
- Includes CCFR, NuTeV dimuon data
- (includes expt'l cuts on dimuons)
- Extract "best fit" for s, sbar dist'ns [enforce s normalization cond'n]
- **NuTeV:** analyzed s, sbar for small $0 < x \le 0.3$
- Initially, reported best fit S⁻ < 0 (opposite to CTEQ)
- CTEQ, NuTeV collaborated on analysis
- Qualitative differences persisted, until this year



Initial NuTeV Analysis of s, sbar Quark Dist'n:


Qualitative disagreement between NuTeV/CTEQ ??

New NuTeV Analysis of s, sbar Quark Dist'n: (D. Mason, DIS06)

NuTeV, CTEQ now agree both qualitatively, quantitatively !

Nuclear Effects in Neutrino DIS?

Miller/Thomas Int J Mod Phys A**20**, 95 (05): v shadowing very different from μ

Z^o: very small coupling to $\rho \rightarrow NC$ shadowing ~ 0

Nuclear effects in v reactions: Hirai, Kumano, Nagai, PR D71, 113007 (05)

Is Shadowing Important for NuTeV?

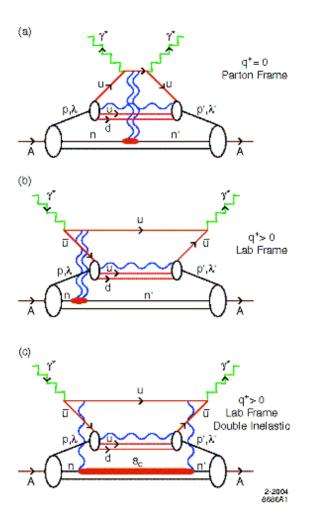
Miller/Thomas Int J Mod Phys A**20**, 95 (05): Perhaps 1) NC shadowing ~ 0 (Z doesn't couple to ρ)

2) NC/CC different for nu, nubar

3) Different shadowing for R^{ν} , $R^{\overline{\nu}}$ \rightarrow account for anomaly??

NuTeV: NO ! • Shadowing low Q^2 phenomenon (~ 1 GeV²)

- Average data much higher Q² (~ 20 GeV²)
- $R^{\overline{\nu}}$ value very close to SM value (should be quite different in M/T scenario)
- Shadowing likely to increase NuTeV anomaly?


Nuclear Effects in Neutrino DIS

Brodsky, Schmidt, Yang (PR D**70**, 116003 (04)) Shadowing/Antishadowing v-A processes

- include Pomeron, Odderon, Reggeon effects
- obtain both shadowing, antishadowing effects
- both constructive, destructive interference
- $\nu, \overline{\nu}$ processes modified in different ways

Predict greater effect on $R^{\overline{
u}}$ than $R^{
u}$

Remove ~ 20% of Weinberg angle anomaly Partial contribution along with CSV, s quarks ??

Conclusions:

- \checkmark NuTeV: Measured CC, NC X-sections for $\,
 u, \overline{
 u} \,$ on Fe
- \checkmark Large (~ 3σ), surprising discrepancy for $\sin^2 \theta_W$
- ✓ "New Physics" difficult to fit LEP results, NuTeV
 "designer particles" unlikely → very delicate
- ✓ "QCD Corrections" to NuTeV measurement??
 - radiative corr'ns → new calc'n, re-analysis in progress
 - **parton CSV** \rightarrow ~ could remove effect [MRST] (model dependence?)
 - strange quark asymmetry ~ 1σ [CTEQ]
 - nuclear effects ~ 20%, Brodsky etal
- CSV, strangeness: at present, most plausible explanations for NuTeV anomaly
- ✓ small additive contrib'ns from CSV, strangeness, nuclear effects ??