Baryon Resonances from Lattice QCD

Robert Edwards Jefferson Lab

N" @ high Q², 2011

Collaborators:
J. Dudek, B. Joo, D. Richards, S. Wallace

Auspices of the Hadron Spectrum Collaboration

Lattice QCD

Goal: resolve highly excited states

$$
N_{f}=2+1(u, d+s)
$$

Anisotropic lattices:

$$
\left(a_{s}\right)^{-1} \sim 1.6 \mathrm{GeV},\left(a_{\mathrm{t}}\right)^{-1} \sim 5.6 \mathrm{GeV}
$$

Spectrum from variational method

Two-point correlator

$$
C(t)=\langle 0| \Phi^{\prime}(t) \Phi(0)|0\rangle
$$

$$
C(t)=\sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}} t}\langle 0| \Phi^{\prime}(0)|\mathfrak{n}\rangle\langle\mathfrak{n}| \Phi(0)|0\rangle
$$

Diagonalize:
eigenvalues \rightarrow spectrum
eigenvectors \rightarrow wave function overlaps

Each state optimal combination of Φ_{i}

$$
\Omega_{\mathfrak{n}}=v_{1}^{\mathfrak{n}} \Phi_{1}+v_{2}^{\mathfrak{n}} \Phi_{2}+\ldots
$$

Benefit: orthogonality for near degenerate states

Operator construction

Baryons: permutations of 3 objects

Permutation group S_{3} : 3 representations

- Symmetric: 1-dimensional -e.g., uud+udu+duu
- Antisymmetric: 1-dimensional
-e.g., uud-udu+duu-...
- Mixed: 2-dimensional
-e.g., udu - duu \& 2duu - udu - uud

Color antisymmetric \rightarrow Require Space [Flavor Spin] symmetric

Classify operators by these permutation symmetries:

- Leads to rich structure

Orbital angular momentum via derivatives

Couple derivatives onto single-site spinors:
Enough D's - build any J,M

$$
\mathcal{O}^{J M} \leftarrow\left(C G C^{\prime} s\right)_{i, j, k}[\vec{D}]_{i}[\vec{D}]_{j}[\Psi]_{k}
$$

Only using symmetries of continuum QCD

$$
\mathrm{Op}_{\mathrm{S}} \leftarrow \text { Derivatives } \quad[\text { Flavor } \quad \text { Dirac }]
$$

Use all possible operators up to 2 derivatives
(transforms like 2 units orbital angular momentum)

Baryon operator basis

3-quark operators with up to two covariant derivatives projected into definite isospin and continuum J^{P}

$$
\mathrm{Op}_{\mathrm{S}} \leftarrow\left(\left[\begin{array}{ll}
\text { Flavor } & \text { Dirac }
\end{array}\right] \quad \text { Space }_{\text {symmetry }}\right)^{J^{P}}
$$

Spatial symmetry classification:
Nucleons: $\mathrm{N}^{2 \mathrm{~S}+1 \mathrm{~L}_{\pi}} \mathrm{J}^{\mathrm{P}}$

Symmetry crucial for spectroscopy

By far the largest operator basis ever used for such calculations

JP	\#ops	Spatial symmetries	
$J=1 / 2^{-}$	24	$N^{2} P_{M} \frac{1}{2}-$	$N^{4} P_{M} \frac{1}{2}^{-}$
$J=3 / 2^{-}$	28	$N^{2} P_{M} 3 / 2^{-}$	$N^{4} P_{M} 3 / 2^{-}$
$J=5 / 2^{-}$	16	$N^{4} P_{M} 5 / 2^{-}$	
$J=1 / 2^{+}$	24	$N^{2} S_{S} \frac{1}{2}+$ $N^{2} S_{M} \frac{1}{2+}$	$N^{4} D_{M} \frac{1}{2^{+}}$ $N^{2} P_{A} \frac{1}{2}^{+}$
$J=3 / 2^{+}$	28	$N^{2} D_{S} 3 / 2^{+}$ $N^{2} D_{M} 3 / 2^{+}$ $N^{2} P_{A} 3 / 2^{+}$	$N^{4} S_{M} 3 / 2^{+}$ $N^{4} D_{M} 3 / 2^{+}$
$J=5 / 2^{+}$	16	$N^{2} D_{S} 5 / 2^{+}$ $N^{2} D_{M} 5 / 2^{+}$	$N^{4} D_{M} 5 / 2^{+}$
$J=7 / 2^{+}$	4	$N^{4} D_{M} 7 / 2^{+}$	

Spin identified Nucleon \& Delta spectrum

arXiv:1104.5152
$\mathrm{m}_{\pi} \sim 520 \mathrm{MeV}$

Spin identified Nucleon \& Delta spectrum

arXiv:1104.5152
$\mathrm{m}_{\pi} \sim 520 \mathrm{MeV}$

Spin identified Nucleon \& Delta spectrum

Discern structure: wave-function overlaps
arXiv:1104.5152
$\mathrm{m}_{\pi} \sim 520 \mathrm{MeV}$

$\mathrm{N}=2 \quad \mathrm{~J}^{+} \quad$ Nucleon \& Delta spectrum

Discern structure: wave-function overlaps

Roper??

Near degeneracy in $\frac{1}{2}+\quad$ consistent with $\operatorname{SU}(6) \quad \mathrm{O}(3)$ but heavily mixed

Spectrum of finite volume field theory

Missing states: "continuum" of multi-particle scattering states

Infinite volume:
continuous spectrum
$E(p)=2 \sqrt{m_{\pi}^{2}+p^{2}}$

Finite volume: discrete spectrum

Deviation from (discrete) free energies depends upon interaction - contains information about scattering phase shift
$\Delta \mathrm{E}(\mathrm{L}) \leftrightarrow \delta(\mathrm{E}):$ Lüscher method

Finite volume scattering

Lüscher method

-scattering in a periodic cubic box (length L)
-finite volume energy levels $E(L) \rightarrow \boldsymbol{\sigma}(E)$

$$
\begin{gathered}
\text { e.g. } \\
\pi \pi \rightarrow \rho \rightarrow \pi \pi \\
\pi N \rightarrow \Delta \rightarrow \pi N
\end{gathered}
$$

At some L , have discrete excited energies

$I=1 \pi \pi$: the " ρ "

Extract $\delta_{1}(\mathrm{E})$ at discrete E

Extracted coupling: stable in pion mass

Feng, Jansen, Renner, 1011.5288

Form Factors

What is a form-factor off of a resonance?
What is a resonance? Spectrum first!

Extension of scattering techniques:
-Finite volume matrix element modified

> Requires excited level transition FF's: some experience - Charmonium E\&M transition FF's (1004.4930)
> - Nucleon $1^{\text {st }}$ attempt: "Roper"->N (0803.3020)

Range: few GeV^{2}
Limitation: spatial lattice spacing

(Very) Large Q^{2}

Standard requirements: $\frac{1}{L} \ll m_{\pi}, m_{N}, Q \ll \frac{1}{a}$
Cutoff effects: lattice spacing $\left(a_{s}\right)^{-1} \sim 1.6 \mathrm{GeV}$

Appeal to renormalization group: Finite-Size scaling
Use short-distance quantity: compute perturbatively and/or parameterize

$$
R\left(Q^{2}\right)=\frac{F\left(s^{2} Q^{2}\right)}{F\left(Q^{2}\right)}, \quad s=2
$$

"Unfold" ratio only at low $Q^{2} / s^{2 N}$

$$
\left.F\left(Q^{2}\right)=R\left(Q^{2} / s^{2}\right) R\left(Q^{2} / s^{4}\right) \cdots R\left(Q^{2}\right) / s^{2 N}\right) F\left(Q^{2} / s^{2 N}\right)
$$

For $Q^{2}=100 \mathrm{GeV}^{2}$ and $\mathrm{N}=3, \quad \mathrm{Q}^{2} / \mathrm{s}^{2 \mathrm{~N}} \sim 1.5 \mathrm{GeV}^{2}$

Initial applications: factorization in pion-FF

Hadronic Decays

Some candidates: determine phase shift Somewhat elastic

Prospects

- Strong effort in excited state spectroscopy
- New operator \& correlator constructions \rightarrow high lying states
- Results for baryon excited state spectrum:
- No "freezing" of degrees of freedom nor parity doubling
- Broadly consistent with non-relativistic quark model
- Add multi-particles \rightarrow baryon spectrum becomes denser
- Short-term plans: resonance determination!
- Lighter quark masses
- Extract couplings in multi-channel systems
- Form-factors:
- Use previous resonance parameters: initially, $Q^{2} \sim$ few $G e V^{2}$
- Decrease lattice spacing: $\left(a_{s}\right)^{-1} \sim 1.6 \mathrm{GeV} \rightarrow 3.2 \mathrm{GeV}$, then $\mathrm{Q}^{2} \sim 10 \mathrm{GeV}^{2}$
- Finite-size scaling: $Q^{2} \rightarrow 100 \mathrm{GeV}^{2}$???

Backup slides

- The end

Baryon Spectrum

"Missing resonance problem"

- What are collective modes?
- What is the structure of the states?

Nucleon Mass Spectrum (Exp): 4*, 3*, 2*

Nucleon spectrum

PDG uncertainty on $B-W$ mass

Phase Shifts demonstration: $\mathrm{I}=2 \pi \pi$

$\pi \pi$ isospin=2
Extract $\delta_{0}(\mathrm{E})$ at discrete E

No discernible pion mass dependence
1011.6352 (PRD)

Phase Shifts: demonstration

$\pi \pi$ isospin $=2$

$\delta_{2}(\mathrm{E})$

Nucleon J-

N \& Δ spectrum: lower pion mass

Still bands of states with same counting More mixing in nucleon $\mathrm{N}=2 \mathrm{~J}+$

Operators are not states

Two-point correlator

$$
C(t)=\langle 0| \Phi^{\prime}(t) \Phi(0)|0\rangle
$$

$$
C(t)=\sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}} t}\langle 0| \Phi^{\prime}(0)|\mathfrak{n}\rangle\langle\mathfrak{n}| \Phi(0)|0\rangle
$$

Full basis of operators: many operators can create same state

$$
\left\langle\mathfrak{n} ; J^{P}\right| \mathcal{O}_{i}^{\mathfrak{n}}|0\rangle=Z_{i}^{\mathfrak{n}}
$$

States may have subset of allowed symmetries

