Baryon Resonances from Lattice QCD

Robert Edwards
Jefferson Lab

N* @ high Q2, 2011

Collaborators:

J. Dudek, B. Joo, D. Richards, S. Wallace Auspices of the Hadron Spectrum Collaboration

Lattice QCD

Goal: resolve highly excited states

$$N_f = 2 + 1 (u,d + s)$$

Anisotropic lattices:

 $(a_s)^{-1} \sim 1.6 \text{ GeV}, (a_t)^{-1} \sim 5.6 \text{ GeV}$

0810.3588, 0909.0200, 1004.4930

Spectrum from variational method

Two-point correlator

$$C(t) = \langle 0 | \Phi'(t) \Phi(0) | 0 \rangle$$

$$C(t) = \sum_{\mathfrak{n}} e^{-E_{\mathfrak{n}}t} \langle 0 \big| \Phi'(0) \big| \mathfrak{n} \rangle \langle \mathfrak{n} \big| \Phi(0) \big| 0 \rangle$$

Matrix of correlators

$$C(t) = \begin{bmatrix} \langle 0|\Phi_1(t)\Phi_1(0)|0\rangle & \langle 0|\Phi_1(t)\Phi_2(0)|0\rangle & \dots \\ \langle 0|\Phi_2(t)\Phi_1(0)|0\rangle & \langle 0|\Phi_2(t)\Phi_2(0)|0\rangle & \dots \\ \vdots & \ddots \end{bmatrix}$$

Diagonalize:

eigenvalues → spectrum eigenvectors → wave function overlaps

Each state optimal combination of Φ_{i}

$$\Omega_{\mathfrak{n}} = v_1^{\mathfrak{n}} \Phi_1 + v_2^{\mathfrak{n}} \Phi_2 + \dots$$

Benefit: orthogonality for near degenerate states

Operator construction

Baryons: permutations of 3 objects

Permutation group S_3 : 3 representations

- Symmetric: 1-dimensional
 - •e.g., uud+udu+duu
- Antisymmetric: 1-dimensional
 - •e.g., uud-udu+duu-...
- Mixed: 2-dimensional
 - e.g., udu duu & 2duu udu uud

Color antisymmetric → Require Space [Flavor Spin] symmetric

Classify operators by these permutation symmetries:

Leads to rich structure

1104.5152

Orbital angular momentum via derivatives

Couple derivatives onto single-site spinors: Enough D's – build any J,M

$$\mathcal{O}^{JM} \leftarrow \left(CGC's\right)_{i,j,k} \left[\vec{D}\right]_i \left[\vec{D}\right]_j \left[\Psi\right]_k$$

Only using symmetries of continuum QCD

$$\operatorname{Op}_{\mathsf{S}} \leftarrow \operatorname{Derivatives} \quad \begin{bmatrix} \operatorname{Flavor} & \operatorname{Dirac} \end{bmatrix}$$

Use all possible **operators** up to 2 derivatives (transforms like 2 units orbital angular momentum)

1104.5152

Baryon operator basis

3-quark operators with up to two covariant derivatives – projected into definite isospin and continuum J^P

$$\operatorname{Op}_{\mathsf{S}} \leftarrow \left(\begin{bmatrix} \operatorname{Flavor} & \operatorname{Dirac} \end{bmatrix} & \operatorname{Space}_{\operatorname{symmetry}} \right)^{J^P}$$

Spatial symmetry classification:

Nucleons: $N^{2S+1}L_{\pi} J^{P}$

Symmetry crucial for spectroscopy

By far the largest operator basis ever used for such calculations

J ^P	#ops	Spatial symmetries	
J=1/2-	24	$N^{2}P_{M}^{\frac{1}{2}}$	N 4P _M ½-
J=3/2-	28	N ² P _M 3/2 ⁻	N 4P _M 3/2-
J=5/2-	16	N ⁴ P _M 5/2 ⁻	
J=1/2+	24	$N^{2}S_{S}^{\frac{1}{2}+}$ $N^{2}S_{M}^{\frac{1}{2}+}$	$N^{4}D_{M}^{\frac{1}{2}+}$ $N^{2}P_{A}^{\frac{1}{2}+}$
J=3/2+	28	N ² D _s 3/2 ⁺ N ² D _M 3/2 ⁺ N ² P _A 3/2 ⁺	N ⁴ S _M 3/2 ⁺ N ⁴ D _M 3/2 ⁺
J=5/2+	16	$N^2D_S5/2^+$ $N^2D_M5/2^+$	N ⁴ D _M 5/2+
J=7/2+	4	$N ^4D_M 7/2^+$	

Spin identified Nucleon & Delta spectrum

Jefferson Lab

Spin identified Nucleon & Delta spectrum

Spin identified Nucleon & Delta spectrum

N=2 J⁺ Nucleon & Delta spectrum

10

 $0.6 \begin{bmatrix} \frac{1}{2} + \frac{3}{2} + \frac{5}{2} + \frac{7}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} - \frac{3}{2} - \frac{5}{2} - \frac{7}{2} - \frac{1}{2} + \frac{3}{2} + \frac{5}{2} + \frac{7}{2} + \frac{1}{2} - \frac{3}{2} - \frac{5}{2} - \frac{7}{2} - \frac{1}{2} = \frac{1}{2} + \frac{3}{2} + \frac{5}{2} + \frac{7}{2} + \frac{1}{2} + \frac{1}{2} + \frac{3}{2} + \frac{5}{2} + \frac{7}{2} + \frac{1}{2} + \frac{1}{2} + \frac{3}{2} + \frac{5}{2} + \frac{7}{2} + \frac{1}{2} + \frac{7}{2} + \frac{1}{2} + \frac{3}{2} + \frac{7}{2} + \frac{1}{2} + \frac{1}{2} + \frac{3}{2} + \frac{7}{2} + \frac{7}{2} + \frac{1}{2} + \frac{1}{2} + \frac{3}{2} + \frac{7}{2} + \frac{7}{2} + \frac{1}{2} + \frac{1}{2} + \frac{3}{2} + \frac{7}{2} + \frac{1}{2} + \frac{1}{2} + \frac{3}{2} + \frac{7}{2} + \frac{1}{2} + \frac{1}$

Roper??

Near degeneracy in $\frac{1}{2}$ consistent with SU(6) O(3) but heavily mixed

Discrepancies??

Operator basis – spatial structure

What else? Multi-particle operators

Spectrum of finite volume field theory

Missing states: "continuum" of multi-particle scattering states

Infinite volume: continuous spectrum $E(p) = 2\sqrt{m_\pi^2 + p^2}$

Finite volume: discrete spectrum

Deviation from (discrete) free energies depends upon interaction - contains information about scattering phase shift

 $\Delta E(L) \leftrightarrow \delta(E)$: Lüscher method

Finite volume scattering

Lüscher method

-scattering in a periodic cubic box (length L)

-finite volume energy levels $E(L) \rightarrow \delta(E)$

e.g. $\pi\pi \to \rho \to \pi\pi$ $\pi N \to \Delta \to \pi N$

At some **L**, have discrete excited energies

I=1 $\pi\pi$: the " ρ "

Extract $\delta_1(E)$ at discrete E

Extracted coupling: stable in pion mass

Stability a generic feature of couplings??

Feng, Jansen, Renner, 1011.5288

Form Factors

What is a form-factor off of a resonance?

What is a resonance? Spectrum first!

Extension of scattering techniques:

Finite volume matrix element modified

$$\langle N|J_{\mu}|N^*\rangle_{\infty} \leftarrow \left[\delta'(E) + \Phi'(E)\right] \langle N|J_{\mu}|N^*\rangle_{\text{volume}}$$
 Phase shift Kinematic factor

Requires excited level transition FF's: some experience

- Charmonium E&M transition FF's (1004.4930)
- Nucleon 1st attempt: "Roper"->N (0803.3020)

Range: few GeV2

Limitation: spatial lattice spacing

(Very) Large Q²

Standard requirements:

$$\frac{1}{L} \ll m_{\pi}, m_N, Q \ll \frac{1}{a}$$

Cutoff effects: lattice spacing $(a_s)^{-1} \sim 1.6 \text{ GeV}$

Appeal to renormalization group: Finite-Size scaling

Use short-distance quantity: compute perturbatively and/or parameterize

$$R(Q^2) = \frac{F(s^2Q^2)}{F(Q^2)}, \qquad s = 2$$

"Unfold" ratio only at low Q2 / s2N

$$F(Q^2) = R(Q^2/s^2)R(Q^2/s^4)\cdots R(Q^2)/s^{2N}) F(Q^2/s^{2N})$$

For $Q^2 = 100 \, GeV^2$ and N=3, $Q^2 / s^{2N} \sim 1.5 \, GeV^2$

Initial applications: factorization in pion-FF

D. Renner

Hadronic Decays

Some candidates: determine phase shift Somewhat elastic

 $m_{\pi} \sim 400 \text{ MeV}$

Prospects

- Strong effort in excited state spectroscopy
 - New operator & correlator constructions \rightarrow high lying states
- Results for baryon excited state spectrum:
 - No "freezing" of degrees of freedom nor parity doubling
 - Broadly consistent with non-relativistic quark model
 - Add multi-particles → baryon spectrum becomes denser
- · Short-term plans: resonance determination!
 - Lighter quark masses
 - Extract couplings in multi-channel systems
- Form-factors:
 - Use previous resonance parameters: initially, $Q^2 \sim few GeV^2$
 - Decrease lattice spacing: $(a_s)^{-1} \sim 1.6 \text{ GeV} \rightarrow 3.2 \text{ GeV}$, then $Q^2 \sim 10 \text{ GeV}^2$
 - Finite-size scaling: $Q^2 \rightarrow 100 \text{ GeV}^2$??

Backup slides

· The end

Baryon Spectrum

"Missing resonance problem"

- What are collective modes?
- What is the structure of the states?

Nucleon spectrum

PDG uncertainty on B-W mass

Phase Shifts demonstration: I=2 $\pi\pi$

 $\pi\pi$ isospin=2

Extract $\delta_0(E)$ at discrete E

No discernible pion mass dependence

1011.6352 (PRD)

Phase Shifts: demonstration

 $\pi\pi$ isospin=2

Nucleon J-

$$Z_i^{\mathfrak{n}} = \langle J^- \mid \mathcal{O}_i^{\mathfrak{n}} \mid 0 \rangle$$

Little mixing in each J-

Nearly "pure" [S= 1/2 & 3/2]

 m/m_{Ω}

N & Δ spectrum: lower pion mass

Still bands of states with same counting More mixing in nucleon N=2 J⁺

 $m_{\pi} \sim 400 \; \text{MeV}$

Operators are not states

Two-point correlator

$$C(t) = \langle 0 | \Phi'(t) \Phi(0) | 0 \rangle$$

$$C(t) = \sum_{\mathbf{n}} e^{-E_{\mathbf{n}}t} \langle 0|\Phi'(0)|\mathbf{n}\rangle \langle \mathbf{n}|\Phi(0)|0\rangle$$

Full basis of operators: many operators can create same state

$$\langle \mathfrak{n}; J^P \mid \mathcal{O}_i^{\mathfrak{n}} \mid 0 \rangle = Z_i^{\mathfrak{n}}$$

States may have subset of allowed symmetries

