ELECTROPRODUCTION OF NUCLEON RESONANCES AT LARGE MOMENTUM TRANSFERS

Vladimir M. Braun

Institut für Theoretische Physik Universität Regensburg

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary
What are b	ig issues?				

• Chiral symmetry in hard processes

• Conjectured: chiral symmetry restored in excited states. All discussions so far have been about degeneracies in mass spectra

Are the form factors of excited parity partner states equal to each other?

 \bullet Breakdown of chiral perturbation theory at miserable $Q^2\sim 0.01$ does not imply that chiral symmetry is broken strongly

What happens with classical low energy theorems? How large is the SU(3) flavor breaking? Does it follow any simple pattern?

• Valence quark momentum fraction distributions

• How do the resonances look like at short distances? Are they the same as the nucleon or different?

The difference is mainly in pion cloud or it affects the quark core?

Prologue

Wave functions

attice

LCSRs

Threshold pion production

Summary

How to transfer large momentum to a fragile system?

an accelerator

 e^- , 12 GeV

proton target

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary
Final sta	te				
	-				

Elastic scattering or excitation

Pro	0g	ue	
	U B		

Lattice

LCSRs

Threshold pion production

Summary

Final state

Elastic scattering or excitation

Deep-inelastic scattering

Heuristic picture:

- quarks can acquire large transverse momenta when they exchange gluons
- "hard" gluon exchanges can be separated from "soft" nonperturbative wave functions
- hard gluons can only be exchanged at small transverse separations

In practice three-quark states indeed seem to dominate, however

- "Squeesing" to small transverse separations occurs very slowly
- Helicity selections rules do not work. Orbital angular momentum?
- $\bullet \ \Rightarrow \ \ \text{More complicated nonperturbative input needed}$

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary

Wave functions and Distribution amplitudes

• Nucleon light-cone wave function

Brodsky, Lepage

$$|P\uparrow\rangle^{\ell_z=0} = \int \frac{[dx][d^2\vec{k}]}{12\sqrt{x_1x_2x_3}} \psi^{L=0}(x_i,\vec{k}_i) \times \\ \times \left\{ \left| u^{\uparrow}(x_1,\vec{k}_1)u^{\downarrow}(x_2,\vec{k}_2)d^{\uparrow}(x_3,\vec{k}_3) \right\rangle - \left| u^{\uparrow}(x_1,\vec{k}_1)d^{\downarrow}(x_2,\vec{k}_2)u^{\uparrow}(x_3,\vec{k}_3) \right\rangle \right\}$$

• Leading-twist-three distribution amplitude

Brodsky, Lepage, Peskin, Chernyak, Zhitnitsky

$$\Phi_{3}(x_{1}, x_{2}, x_{3}; \mu) = 2 \int^{\mu} [d^{2}\vec{k}] \psi^{L=0}(x_{1}, x_{2}, x_{3}; \vec{k}_{1}, \vec{k}_{2}, \vec{k}_{3})$$

can be studied using the OPE

$$\Phi_{3}(x_{i};\mu) = 120f_{N}x_{1}x_{2}x_{3}\left\{1+c_{10}(x_{1}-2x_{2}+x_{3})L^{\frac{8}{3\beta_{0}}} + c_{11}(x_{1}-x_{3})L^{\frac{20}{9\beta_{0}}}+c_{20}\left[1+7(x_{2}-2x_{1}x_{3}-2x_{2}^{2})\right]L^{\frac{14}{3\beta_{0}}} + c_{21}\left(1-4x_{2}\right)(x_{1}-x_{3})L^{\frac{40}{9\beta_{0}}}+c_{22}\left[3-9x_{2}+8x_{2}^{2}-12x_{1}x_{3}\right]L^{\frac{32}{9\beta_{0}}}+\dots\right\}$$

- $f_N(\mu_0)$: wave function at the origin
- $c_{nk}(\mu_0)$: shape parameters

 $L \equiv \alpha_s(\mu) / \alpha_s(\mu_0)$

Braun, Manashov, Rohwild

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary

Wave functions and Distribution amplitudes (II)

• Contributions of orbital angular momentum Ji, Ma, Yuan, '03 $|P\uparrow\rangle^{\ell_{z}=1} = \int \frac{[dx][d^{2}\vec{k}]}{12\sqrt{x_{1}x_{2}x_{3}}} \left[k_{1}^{+}\psi_{1}^{L=1}(x_{i},\vec{k}_{i}) + k_{2}^{+}\psi_{2}^{L=1}(x_{i},\vec{k}_{i})\right] \times \\ \times \left\{ \left| u^{\uparrow}(x_{1},\vec{k}_{1})u^{\downarrow}(x_{2},\vec{k}_{2})d^{\downarrow}(x_{3},\vec{k}_{3}) \right\rangle - \left| d^{\uparrow}(x_{1},\vec{k}_{1})u^{\downarrow}(x_{2},\vec{k}_{2})u^{\downarrow}(x_{3},\vec{k}_{3}) \right\rangle \right\}$

are related to higher-twist-four distribution amplitudes

Belitsky, Ji, Yuan, '03

$$\begin{split} \Phi_4(x_2, x_1, x_3; \mu) &= 2 \int^{\mu} \frac{[d^2 \vec{k}]}{m_N x_3} \ k_3^- \left[k_1^+ \psi_1^{L=1} + k_2^+ \psi_2^{L=1} \right] (x_i, \vec{k}_i) \\ \Psi_4(x_1, x_2, x_3; \mu) &= 2 \int^{\mu} \frac{[d^2 \vec{k}]}{m_N x_2} \ k_2^- \left[k_1^+ \psi_1^{L=1} + k_2^+ \psi_2^{L=1} \right] (x_i, \vec{k}_i) \end{split}$$

and, again, can be studied using OPE

Braun, Fries, Mahnke, Stein '00

$$\Phi_4(x_i;\mu) = 12\lambda_1 x_1 x_2 + 12f_N x_1 x_2 \left[1 + \frac{2}{3}(1 - 5x_3)\right] + \dots$$

$$\Psi_4(x_i;\mu) = 12\lambda_1 x_1 x_3 + 12f_N x_1 x_3 \left[1 + \frac{2}{3}(1 - 5x_2)\right] + \dots$$

• to this accuracy only one new nonperturbative constant $\lambda_1(\mu)$

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary
So what?					
So what:					

The moral of the story so far:

- Hard (Brodsky-Lepage) and soft (Feynman) contributions to baryon form factors are additive; this can be formalized using "strategy of regions" or SCET
- Both must be taken into account
- Feynman contribution is complicated because it involves large transverse distances, hence all orbital angular momenta (all twists)

What can be done:

• Hope in Sudakov suppression of Feynman, k_T factorization

unfortunately seems to be too weak

- Models for complete baryon wave functions quark models, AdS/QCD, Dyson-Schwinger a model is not a theory
- Estimate Feynman in terms of DA using dispersion relations and duality LCSR

an estimate does not have error bars

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary
What we a	are doing:				

Braun et al. Phys.Rev.Lett.103:072001,2009

- Calculate moments of distribution amplitudes (DAs)

 Lattice QCD
 - expensive
 - many technical problems still need to be solved
 - only limited information
 - studies of parity partners look most promising, e.g.

 $\langle 0|qqq|N(p)\rangle = f_N N(p)$ $\langle 0|qqq|N^*(p)\rangle = f_{N^*} \gamma_5 N(p)$

- - based on analyticity and quark-hadron duality
 - well-known and tested technique for mesons, less so for baryons
 - irredicible uncertainty of 20%(?) need confirmation
 - NLO calculations so far not available

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary

A large-scale long-term research project within QCDSF:

First principles calculation of lowest moments of baryon distribution amplitudes

with emphasize on the comparison of states with opposite parity

Wilson gauge • new data N	action $f_f = 2$:	, Wilson c	lover fermio	ons	S	tatus: N	lay 2011
	β	κ	$m_{\pi}[\text{GeV}]$	volume	$a[\mathrm{fm}]$	$L[\mathrm{fm}]$	$m_{\pi}L$
	5.29	0.13632	0.270	$24^3 \times 48$	0.075	1.8	2.5
	5.29	0.13632	0.270	$32^3 \times 64$	0.075	2.4	3.3
	5.29	0.13632	0.270	$40^{3} \times 64$	0.075	3.0	4.1

Lattice

LCSRs

 β
 κ
 m_{π} [GeV]
 volume
 a[fm]
 L[fm]
 $m_{\pi}L$

 5.29
 0.13640
 0.170
 48³ × 64
 0.075
 3.6
 3.1

• starting $N_f = 2 + 1$ (PRACE proposal): $\Lambda(1116), \Lambda(1405)$

β	κ_l	$m_{\pi}[\text{GeV}]$	volume	$a[\mathrm{fm}]$	L[fm]	$m_{\pi}L$
5.5	0.121095	0.290	$32^{3} \times 64$	0.079	2.5	3.7
5.5	0.121145	0.241	$32^3 \times 64$	0.079	2.5	3.1
5.5	0.121193	0.180	$32^3 \times 64$	0.079	2.5	2.3
5.5	0.121193	0.180	$48^3 \times 96$	0.079	3.8	3.5

Summary

reshold nion production

Prologue

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary
Wave function	is at the origin, $L =$	0			

• All results preliminary, statistical errors only

thanks to Rainer Schiel

• All results preliminary, statistical errors only

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary
Finite size effe	cts				

$$egin{array}{ccc} N & & & \ u^{\uparrow} & 0.37 \pm (?) \ q^{\downarrow} & 0.31 \pm (?) \ q^{\uparrow} & 0.32 \pm (?) \end{array}$$

 $0.49 \pm (?)$ $0.26 \pm (?)$ $0.25 \pm (?)$

-			
		=	

Wave functions

Lattice

LCSRs

Threshold pion production

Summary

From distribution amplitides to form factors: Duality

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary

a consequence of two major principles:

• unitarity \leftarrow probability interpretation of wave functions

$$R(s) = \frac{1}{\pi} \operatorname{Im} \Pi(s = q^2)$$

where

$$i \int d^4x \, e^{iqx} \langle 0| T\{j^{\rm em}_{\mu}(x)j^{\rm em}_{\nu}(0)\}|0\rangle \, = \, (q_{\mu}q_{\nu} - g_{\mu\nu}q^2)\Pi(q^2)$$

• analyticity ← causality

$$R(s) = \frac{1}{2\pi i} [\Pi(q^2 + i\epsilon) - \Pi(q^2 - i\epsilon)]$$

$$\int_{0}^{s_0} ds R(s) = \frac{1}{2\pi i} \oint dq^2 R(q^2)$$

$$\simeq \frac{1}{2i} \oint dq^2 R^{\text{pQCD}}(q^2)$$

$$\lim_{R \to q^2} Re^{\frac{1}{2}}$$

because the region of $q^2 \sim \Lambda_{\rm QCD}^2$ is avoided

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary

• a development of this idea \Rightarrow Light-Cone Sum Rules:

- T(p, q) is calculated in terms of N^* distribution amplitudes Balitsky, Braun, Kolesnichenko, Nucl. Phys. B312:509-550, 1989 Braun, Halperin, Phys. Lett. B328:457-465, 1994
- This is a Feynman (soft) contribution; hard terms can be added systematically and without double counting

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary

Question:

Can one use LCSRs to extract the distribution amplitutudes from experimental data?

To what detail?

Defensible error bars?

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary
F	*				
Example: γ	$\gamma \to \pi \gamma$ form facto)r			

- B. Aubert et al. [The BABAR Collaboration], Phys. Rev. D80, 052002 (2009)
- Two-component models

S.S. Agaev, V.M. Braun, N. Offen, F.A. Porkert, Phys. Rev. D83 (2011) 054020

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary

• The same models describe pion form EM factor and $B \rightarrow \pi \ell \nu_{\ell}$ width

• However, these two can be described with much simpler models as well

state-of-the-art NLO LCSRs in all cases

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary

Light-Cone Sum Rules: Nucleon Electromagnetic Formfactors

Braun, Lenz, Wittmann; PRD73:094019,2006

• Nucleon DAs fitted to the G_E^p/G_M^p ratio

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary

Towards baryon LCSRs with NLO corrections

Passek-Kumericki, Peters, Phys.Rev.D78:033009,2008

Figure: LCSR results for the electromagnetic proton form factors for a realistic model of nucleon distribution amplitudes. Left panel: Leading order (LO); right panel: next-to-leading order (NLO) for twist-three contributions. Figure adapted from [PassekKumericki:2008sj].

NEW a consistent renormalization scheme for three-quark operators (S. Kränkl, A. Manashov, in preparation)

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary
$\gamma^* N \to N$	*(1535): helicity am	plitudes			

• A pilot project: Braun *et al.* Phys.Rev.Lett.103:072001,2009 Electroproduction of $N^*(1535)$ with lattice-constrained N^* distribution amplitides

CLAS data: I.G. Aznauryan et al., Phys.Rev.C80:055203,2009

Tradition: excitation of nucleon resonances (transition form factors)

 $\begin{array}{rcl} e(l) + p(P) & \rightarrow & e(l') + \Delta(1232)(P') \\ e(l) + p(P) & \rightarrow & e(l') + N(1440)(P') \end{array}$

• Proposal: pion electroproduction close to threshold $W \rightarrow W_{\mathrm{th}}$

 $\begin{array}{rcl} e(l)+p(P) & \rightarrow & e(l')+\pi^+(k)+n(P') \\ e(l)+p(P) & \rightarrow & e(l')+\pi^0(k)+p(P') \end{array}$

$$\begin{array}{rcl} W^2 & = & (P'+k)^2 \\ W_{\rm th} & = & m_N+m_\pi \\ Q^2 & = & -q^2 = -(\ell-\ell')^2 \end{array}$$

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary

Generalized Form Factors = S-wave Multipoles at Threshold

at the threshold

$$\langle \pi N | j_{\mu}^{\rm em} | p \rangle = -\frac{i}{f_{\pi}} \bar{N}(P_2) \gamma_5 \left\{ \left(\gamma_{\mu} q^2 - q_{\mu} \not q \right) \frac{1}{m_N^2} G_1^{\pi N}(Q^2) - \frac{i\sigma_{\mu\nu} q^{\nu}}{2m_N} G_2^{\pi N}(Q^2) \right\} N(P_2)$$

related to S-wave multipoles in the PWA, e.g. for $m_\pi=0$

$$\begin{split} E_{0+}^{\pi N}(Q^2, W_{\rm th}) &= \frac{\sqrt{4\pi\alpha_{\rm em}}}{8\pi} \frac{Q^2 \sqrt{Q^2 + 4m_N^2}}{m_N^3 f_\pi} G_1^{\pi N} \\ L_{0+}^{\pi N}(Q^2, W_{\rm th}) &= \frac{\sqrt{4\pi\alpha_{\rm em}}}{32\pi} \frac{Q^2 \sqrt{Q^2 + 4m_N^2}}{m_N^3 f_\pi} G_2^{\pi N} \end{split}$$

e.g. the differential cross section at threshold is given by

$$\frac{d\sigma_{\gamma^*}}{d\Omega_{\pi}}\Big|_{\rm th} = \frac{2|\vec{k}_f|W}{W^2 - m_N^2} \left[(E_{0+}^{\pi N})^2 + \epsilon \frac{Q^2}{(\omega_{\gamma}^{\rm th})^2} (L_{0+}^{\pi N})^2 \right]$$

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary
Chiral rotat	ion				

• In the chiral limit, $m_\pi/m_N
ightarrow 0$, the pion can be "rotated" away:

$$\begin{split} |p\uparrow\rangle &= \frac{\phi_s(x)}{\sqrt{6}} |2u_{\uparrow}d_{\downarrow}u_{\uparrow} - u_{\uparrow}u_{\downarrow}d_{\uparrow} - d_{\uparrow}u_{\downarrow}u_{\uparrow}\rangle + \frac{\phi_a(x)}{\sqrt{2}} |u_{\uparrow}u_{\downarrow}d_{\uparrow} - d_{\uparrow}u_{\downarrow}u_{\uparrow}\rangle \\ |p\uparrow\pi^0\rangle &= \frac{\phi_s(x)}{2\sqrt{6}f_{\pi}} |6u_{\uparrow}d_{\downarrow}u_{\uparrow} + u_{\uparrow}u_{\downarrow}d_{\uparrow} + d_{\uparrow}u_{\downarrow}u_{\uparrow}\rangle - \frac{\phi_a(x)}{2\sqrt{2}f_{\pi}} |u_{\uparrow}u_{\downarrow}d_{\uparrow} - d_{\uparrow}u_{\downarrow}u_{\uparrow}\rangle \\ n\uparrow\pi^+\rangle &= \frac{\phi_s(x)}{\sqrt{12}f_{\pi}} |2u_{\uparrow}d_{\downarrow}u_{\uparrow} - 3u_{\uparrow}u_{\downarrow}d_{\uparrow} - 3d_{\uparrow}u_{\downarrow}u_{\uparrow}\rangle - \frac{\phi_a(x)}{2f_{\pi}} |u_{\uparrow}u_{\downarrow}d_{\uparrow} - d_{\uparrow}u_{\downarrow}u_{\uparrow}\rangle \end{split}$$

Pobylitsa, Polyakov, Strikman; PRL87(2001)022001

allows one to "look" at the proton from a different "angle"

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary
Low-Energy	y Theorems				
• predate Ch	PT and QCD				

Chiral symmetry:

(a) pion mass $m_{\pi} \to 0$ **(a)** pion coupling $\sim |k| \to 0$

• Pion emission from external legs

• Chiral Rotation

$$\langle \pi^a N | j^{
m em}_\mu | N
angle \sim rac{i}{f_\pi} \langle N | [j^{
m em}_\mu, Q^a_5] | N
angle$$

Kroll, Ruderman '54

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary
Low-Energy	/ Theorems –	continued			

PCAC + current algebra:

- The $\mathcal{O}(m_{\pi})$ corrections can be added
- but, no systematic way to treat $\mathcal{O}(m_{\pi}^2)$ terms (ChPT)

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary

- expected to fail for
$$Q^2 \sim {m_N^3 \over m_\pi}$$

since π cannot have small momentum w.r.t. the initial and final state protons simultaneously

at threshold

$$m_N^2 - (P-k)^2 = \frac{m_\pi}{m_N} \left[Q^2 + 2m_N^2 \right]$$

⇒ phenomenological Lagrangians to take into account nucleon resonances
 ⇒ or go over to quark-gluon description

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary

LCSR: Deviation from LET:

Braun, Ivanov, Lenz, Peters, PRD75:014021,2007 Braun, Ivanov, Peters, PRD77:034016,2008

 \heartsuit LCSR reproduce LET for $Q^2 \sim 1 \text{ GeV}^2$

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary

Puneet Khetarpal, PhD Thesis, Aug. 2010

bole formula G_D are plotted as using three methods (red, blue tistical uncertainties added in he bottom. The LCSR based ncertainties (magenta-dashed)

\heartsuit Nice confirmation of LET in π^0 electroproduction

98

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary

Nucleon axial form factor from π^+ electroproduction at threshold

• a very old idea

$$rac{Q^2}{m_N^2} G_1^{\pi^+ n} = rac{g_A}{\sqrt{2}} rac{Q^2}{(Q^2 + 2m_N^2)} G_M^n + rac{1}{\sqrt{2}} G_A$$

- ? need S-wave very close to threshold
- ? may help that *P*-wave is rather well understood

• may work better for large Q^2 as for small Q^2 !

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary
0	and the second second				
Once more,	physical issues				

• Chiral symmetry in hard processes

• Conjectured: chiral symmetry restored in excited states. All discussions so far have been about degeneracies in mass spectra

Are the form factors of excited parity partner states equal to each other?

 \bullet Breakdown of chiral perturbation theory at miserable $Q^2\sim 0.01$ does not imply that chiral symmetry is broken strongly

What happens with classical low energy theorems? How large is the SU(3) flavor breaking? Does it follow any simple pattern?

• Valence quark momentum fraction distributions

• How do the resonances look like at short distances? Are they the same as the nucleon or different?

The difference is mainly in pion cloud or it affects the quark core?

Prologue	Wave functions	Lattice	LCSRs	Threshold pion production	Summary
Acknowlde	egements				

QCDSF Collaboration:

M. Göckeler, C. Hagen, R. Horsley, T. Kaltenbrunner, Y. Nakamura, D. Pleiter, P. E. L. Rakow, A. Schäfer, R. Schiel, G. Schierholz, H. Stüben, N. Warkentin, P. Wein, J. M. Zanotti

LCSR group

I. Anikin, A. Lenz, N. Offen, J. Rohrwild

• general QCD theory aspects

S. Kränkl, A. Manashov

