OLYMPUS

Axel Schmidt

MIT

June 29, 2016

The OLYMPUS Experiment

The OLYMPUS Experiment

Elastic scattering cross section ratio:

$$\frac{e^+ p \longrightarrow e^+ p}{e^- p \longrightarrow e^- p}$$

The important points:

1 Motivation:

- Why the discrepancy calls for a measurement of $\sigma_{e^+p}/\sigma_{e^-p}$
- 2 Experiment:
 - The advantages OLYMPUS has in making this measurement
- 3 Analysis:
 - How to guarantee an accurate result

The important points:

1 Motivation:

• Why the discrepancy calls for a measurement of $\sigma_{e^+p}/\sigma_{e^-p}$

2 Experiment:

The advantages OLYMPUS has in making this measurement

3 Analysis:

How to guarantee an accurate result

Experiment

Theory

The two form factor extraction methods disagree.

The two form factor extraction methods disagree.

 $\sigma_{e^+p}/\sigma_{e^-p}$ is sensitive to two-photon exchange.

$$\mathcal{M} = + \mathcal{O}(\alpha^3)$$

 $\sigma_{e^+p}/\sigma_{e^-p}$ is sensitive to two-photon exchange.

 $\sigma_{e^+p}/\sigma_{e^-p}$ is sensitive to two-photon exchange.

$$\frac{\sigma_{e^+p}}{\sigma_{e^-p}} \approx 1 + \frac{4\text{Re}\{\mathcal{M}_{2\gamma}\mathcal{M}_{1\gamma}\}}{|\mathcal{M}_{1\gamma}|^2}$$

A few percent effect is large enough to resolve the discrepancy.

A few percent effect is large enough to resolve the discrepancy.

Previous data are inadequate.

Previous data are inadequate.

Three new experiments have taken data in the last few years.

OLYMPUS

CLAS VEPP-3

Three new experiments have taken data in the last few years.

Three new experiments have taken data in the last few years.

All three probe the relevant, low ϵ , high Q^2 phase space.

e

The important points:

1 Motivation:

• Why the discrepancy calls for a measurement of $\sigma_{e^+p}/\sigma_{e^-p}$

2 Experiment:

- The advantages OLYMPUS has in making this measurement
- 3 Analysis:
 - How to guarantee an accurate result

The OLYMPUS Experiment

- 60 scientists from 13 institutions in 6 countries
- Detector previously used in the BLAST experiment at MIT
- Collected data at DESY, Hamburg, Germany

• Alternate $e^- \leftrightarrow e^+$ daily

• Alternate $e^- \leftrightarrow e^+$ daily

Alternate e⁻ ↔ e⁺ daily
Typical current: 50–70 mA

- Alternate $e^- \leftrightarrow e^+$ daily
- Typical current: 50–70 mA
- Windowless hydrogen target

- Alternate $e^- \leftrightarrow e^+$ daily
- Typical current: 50–70 mA
- Windowless hydrogen target
- $2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$

Over 4 fb⁻¹ recorded!

Advantage II: large acceptance spectrometer

Advantage III: redundant luminosity monitors

Ways to determine the relative luminosity between e^+ and e^- running:

1 Slow control system

- beam current × target density
- accurate to a few percent

Advantage III: redundant luminosity monitors

Ways to determine the relative luminosity between e^+ and e^- running:

Slow control system

- beam current × target density
- accurate to a few percent
- **2** Forward tracking telescopes

Forward telescopes monitor the elastic *ep* rate.

Forward telescopes monitor the elastic *ep* rate.

Forward telescopes monitor the elastic *ep* rate.

Advantage III: redundant luminosity monitors

Ways to determine the relative luminosity between e^+ and e^- running:

1 Slow control system

- beam current × target density
- accurate to a few percent
- 2 Forward tracking telescopes
- 3 Symmetric Møller/Bhabha Calorimeters

Calorimeters monitor the elastic *ee* rate.

Calorimeters monitor the elastic *ee* rate.

The Møller cross section is 60% larger than the Bhabha cross section.

A better method: multi-interaction events

A better method: multi-interaction events

A better method: multi-interaction events

$$\mathcal{L} = \frac{N_{\text{multi}} \times N_{\text{bunches}}}{N_{\text{Møller}} \times \sigma_{ep}} + \dots \text{ corrections}$$

This is immune to:

- Møller/Bhabha simulation errors
- Detector/DAQ inefficiency
- Beam position errors

Accuracy better than 0.3%!

The important points:

1 Motivation:

- Why the discrepancy calls for a measurement of $\sigma_{e^+p}/\sigma_{e^-p}$
- 2 Experiment:
 - The advantages OLYMPUS has in making this measurement
- **3** Analysis:
 - How to guarantee an accurate result

Differences between e^- and e^+ running:

- Lepton curvature direction
 - Acceptance (as a function of angle)
 - Efficiency (as a function of angle)

Differences between e^- and e^+ running:

- Lepton curvature direction
 - Acceptance (as a function of angle)
 - Efficiency (as a function of angle)
- Radiative corrections
 - Soft two-photon exchange
 - Bremsstrahlung

Differences between e^- and e^+ running:

- Lepton curvature direction
 - Acceptance (as a function of angle)
 - Efficiency (as a function of angle)
- Radiative corrections
 - Soft two-photon exchange
 - Bremsstrahlung

Simulate with Monte Carlo!

Experimental data and simulated data are analyzed with the same software.

$$R_{2\gamma} = \frac{N_{e^+p}^{e\times p.}}{\sigma_{e^+p}^{sim.}\mathcal{L}_{e^+p}} \times \frac{\sigma_{e^-p}^{sim.}\mathcal{L}_{e^-p}}{N_{e^-p}^{e\times p.}}$$

Simulating radiative corrections give us freedom in our elastic selection.

Elastic events are easy to select.

Elastic events are easy to select.

After background subtraction, we can form yields.

We can test our simulation without biasing the result.

1 Left/right ratio:

$$\frac{R_L}{R_R} \equiv \left(\frac{\sigma^{exp.}}{\sigma^{sim.}}\right)_L / \left(\frac{\sigma^{exp.}}{\sigma^{sim.}}\right)_R$$

2 Lepton-averaged cross section ratio:

$$\frac{\bar{\sigma}^{exp.}}{\bar{\sigma}^{sim.}} \equiv \frac{\sigma_{e^+p}^{exp.} + \sigma_{e^-p}^{exp.}}{\sigma_{e^+p}^{sim.} + \sigma_{e^-p}^{sim.}}$$

Left/right comparisons can reveal deviations.

Lepton-averaged cross section is limited by knowedge of the form factors.

We exploit redundancy to control our systematics.

Acceptance

- $\blacksquare \longrightarrow \mathsf{Lepton}\mathsf{-}\mathsf{averaged}$ cross section
- $\blacksquare \longrightarrow \mathsf{Left-right} ratio$
- Luminosity
 - $\blacksquare \longrightarrow \mathsf{Two}$ independent monitors
- Radiative corrections / form factors
 - $\blacksquare \longrightarrow$ Simulate multiple corrections, form factor models
- Tracking efficiency
 - \blacksquare \longrightarrow Two independent track-reconstruction algorithms
- Event selection / background subtraction
 - $\blacksquare \longrightarrow \mathsf{Multiple} \text{ independent analyses}$

Results will be released when we are confident in all of our systematic checks.

• $\sigma_{e^+p}/\sigma_{e^-p}$ will say if two-photon exchange causes the form factor discrepancy.

- $\sigma_{e^+p}/\sigma_{e^-p}$ will say if two-photon exchange causes the form factor discrepancy.
- OLYMPUS has advantages:
 - Excellent statistics
 - Large acceptance
 - Redundant luminosity monitors

- $\sigma_{e^+p}/\sigma_{e^-p}$ will say if two-photon exchange causes the form factor discrepancy.
- OLYMPUS has advantages:
 - Excellent statistics
 - Large acceptance
 - Redundant luminosity monitors
- Redundancy helps us guard against systematics.

- $\sigma_{e^+p}/\sigma_{e^-p}$ will say if two-photon exchange causes the form factor discrepancy.
- OLYMPUS has advantages:
 - Excellent statistics
 - Large acceptance
 - Redundant luminosity monitors
- Redundancy helps us guard against systematics.
- Expect results soon.

Results from VEPP-3, CLAS

e

Results from VEPP-3, CLAS

e

CLAS results

CLAS results

VEPP-3 results

Figs. 1 and 2 from PRL 114, 062005 (2015)

VEPP-3 results

Results from CLAS and VEPP-3

Back-up Slides

Standard radiative corrections neglect hard two-photon exchange.

Multi-interaction analysis results

