Qweak: Measuring the Weak Charge of the Proton With Parity Violation in Electron Scattering

UNIVERSITY *J***IRGINIA**

Thanks to Mark Pitt, Paul King, Dave Mack, Kurtis Bartlett, and Wouter Deconinck for figures

Parity-Violating Electron Scattering

Low Q² offers complementary probes of new physics at multi-TeV scales $0\nu\beta\beta$ decay, β decay, EDM, DM, LFV, weak decays, g_{μ} -2...

Parity-Violating Electron Scattering: Low energy weak neutral current couplings, precision weak mixing angle (SLAC, Jefferson Lab, Mainz)

Parity-Violating Electron Scattering

Low Q² offers complementary probes of new physics at multi-TeV scales $0\nu\beta\beta$ decay, β decay, EDM, DM, LFV, weak decays, g_{μ} -2...

Parity-Violating Electron Scattering: Low energy weak neutral current couplings, precision weak mixing angle (SLAC, Jefferson Lab, Mainz)

$$\sum_{\substack{\gamma, Z^{0} \\ \text{unpolarized target}}}^{\text{longitudinally}} \sigma \propto |A_{\gamma} + A_{\text{weak}}|^{2} \qquad A_{PV} = \frac{\sigma_{R} - \sigma_{L}}{\sigma_{R} + \sigma_{L}} \sim 10^{-4}Q^{2}$$

Parity-Violating Electron Scattering

Low Q² offers complementary probes of new physics at multi-TeV scales $0\nu\beta\beta$ decay, β decay, EDM, DM, LFV, weak decays, g_{μ} -2...

Parity-Violating Electron Scattering: Low energy weak neutral current couplings, precision weak mixing angle (SLAC, Jefferson Lab, Mainz)

$$\frac{\text{longitudinally}}{\text{polarized }e^{-}} \sigma \propto |A_{\gamma} + A_{\text{weak}}|^{2} \qquad A_{PV} = \frac{\sigma_{R} - \sigma_{L}}{\sigma_{R} + \sigma_{L}} \sim 10^{-4}Q^{2}$$

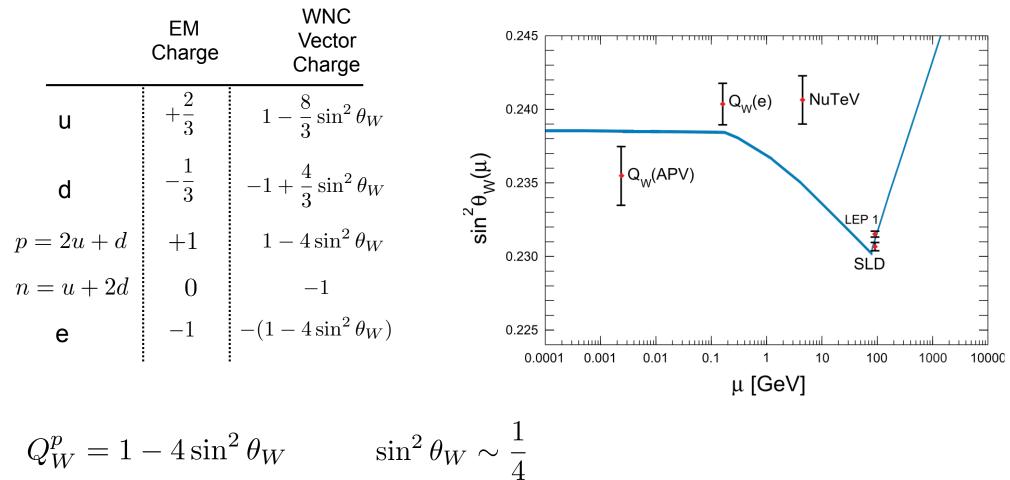
unpolarized target ~ $|A_{\gamma}|^{2} + 2A_{\gamma}(A_{\text{weak}})^{*} + \dots$

Many new physics models give rise to new neutral current interactions

$$\mathcal{L} = \mathcal{L}_{\texttt{SM}} + \mathcal{L}_{\texttt{new}}$$

Electromagnetic amplitude interferes with Z-exchange as

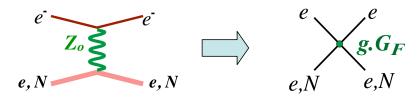
well as any new physics


Heavy Z's and neutrinos, technicolor, compositeness, extra dimensions, SUSY...

$$\left|\mathbf{A}_{\gamma}+\mathbf{A}_{\mathbf{Z}}+\mathbf{A}_{\mathrm{new}}
ight|^{2}
ightarrow\mathbf{A}_{\gamma}^{2}\left[1+2\left(rac{\mathbf{A}_{\mathbf{Z}}}{\mathbf{A}_{\gamma}}
ight)+2\left(rac{\mathbf{A}_{\mathrm{new}}}{\mathbf{A}_{\gamma}}
ight)
ight]$$

SLAC E122 (1978): First measurement of PVES, central to establishing SU(2)_L X U(1)_Y

Weak Neutral Current Vector Charge



Suppression of Standard Model WNC vector coupling to the proton enhances the sensitivity of parity-violating interactions with the proton for new physics

Low energy WNC interactions ($Q^2 << M_Z^2$)

Heavy mediators = contact interactions

Low energy WNC interactions $(Q^2 << M_Z^2)$

Heavy mediators = contact interactions

 $f_{2} \xrightarrow{e} I_{e,N} \xrightarrow{e} I_{e,N} \xrightarrow{e} I_{e,N} \xrightarrow{e} I_{e,N} \xrightarrow{e} I_{e,N} \xrightarrow{e} I_{e,N} \xrightarrow{f_{1}} \underbrace{f_{1}}_{f_{2}} \xrightarrow{f_{1}} \underbrace{f_{1}}_{f_{2}} \xrightarrow{f_{1}} \underbrace{f_{1}}_{f_{2}} \xrightarrow{f_{1}} \underbrace{f_{2}}_{f_{2}} \xrightarrow{f_{2}} \xrightarrow{f_{2}} \underbrace{f_{2}}_{f_{2}} \xrightarrow{f_{2}} \xrightarrow{f_{2}} \xrightarrow{f_{2}} \xrightarrow{f_{2}} \underbrace{f_{2}}_{f_{2}} \xrightarrow{f_{2}} \xrightarrow{f_{2$

Consider $f_1f_1 \rightarrow f_2f_2$ or $f_1f_2 \rightarrow f_1f_2$

$$\mathcal{L}_{f_1 f_2} = \sum_{i,j=L,R} \frac{(g_{ij}^{12})^2}{\Lambda_{ij}^2} \bar{f}_{1i} \gamma_\mu f_{1i} \bar{f}_{2j} \gamma_\mu f_{2j}$$

Eichten, Lane and Peskin, PRL50 (1983)

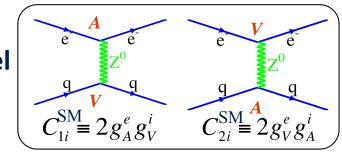
mass scale Λ , coupling g for each fermion and handedness combination

e.N

Low energy WNC interactions ($Q^2 << M_Z^2$)

Heavy mediators = contact interactions

Consider $f_1f_1 \rightarrow f_2f_2$ or $f_1f_2 \rightarrow f_1f_2$


$$\mathcal{L}_{f_1 f_2} = \sum_{i,j=L,R} \frac{(g_{ij}^{12})^2}{\Lambda_{ij}^2} \bar{f}_{1i} \gamma_\mu f_{1i} \bar{f}_{2j} \gamma_\mu f_{2j}$$

 $\begin{array}{c} e \\ e, N \end{array} \xrightarrow{e} \\ f_1 \\ f_2 \\$

Eichten, Lane and Peskin, PRL50 (1983)

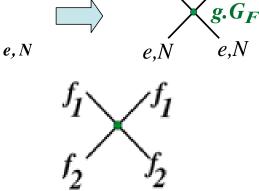
mass scale Λ , coupling g for each fermion and handedness combination

Example: Standard model e-q couplings

precision measurement to test for new possible couplings

$$C_{1q} = (g_{RR}^{eq})^2 + (g_{RL}^{eq})^2 - (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2$$

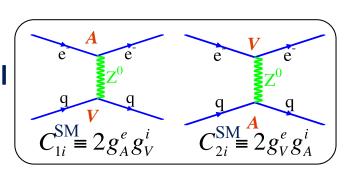
$$C_{2q} = (g_{RR}^{eq})^2 - (g_{RL}^{eq})^2 + (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2$$


e.*N*

Low energy WNC interactions ($Q^2 << M_Z^2$)

Heavy mediators = contact interactions

Consider $f_1f_1 \rightarrow f_2f_2$ or $f_1f_2 \rightarrow f_1f_2$

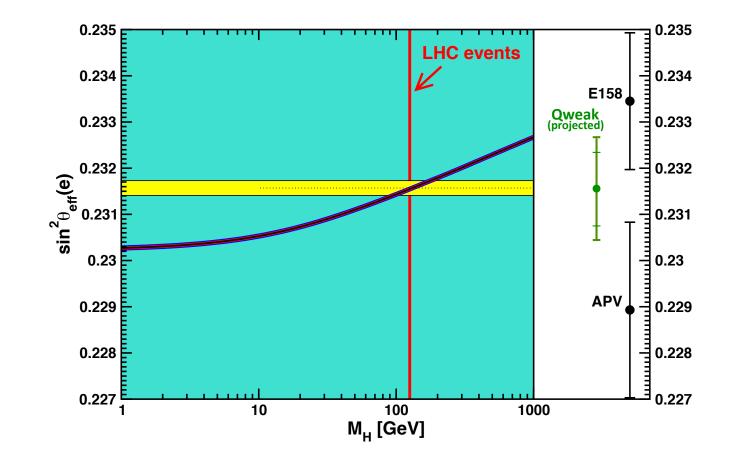

$$\mathcal{L}_{f_1 f_2} = \sum_{i,j=L,R} \frac{(g_{ij}^{12})^2}{\Lambda_{ij}^2} \bar{f}_{1i} \gamma_\mu f_{1i} \bar{f}_{2j} \gamma_\mu f_{2j}$$

Eichten, Lane and Peskin, PRL50 (1983)

mass scale A, coupling g for each fermion and handedness combination

Example: Standard model e-q couplings

precision measurement to test for new possible couplings

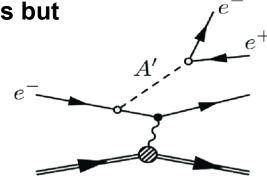

$$C_{1q} = (g_{RR}^{eq})^2 + (g_{RL}^{eq})^2 - (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2$$

 $C_{2q} = (g_{RR}^{eq})^2 - (g_{RL}^{eq})^2 + (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2$

Conventional "mass limits" in precision measurements are defined using a compositeness scale $g^2=4\pi$.

Following the conventions of Erler *et al.* (arXiv1401.6199): a 4% measurement of $Q_W^p = 2C_{1u} + C_{1d}$ corresponds to a mass limit of 33 TeV.

Mixing Angle in Higgs Era



Can there be light new physics?

Dark photon, couples to Dark Sector massive particles but with small E&M couplings to known matter

Hypothesis could explain $(g-2)_{\mu}$ discrepancy, 511keV line in galactic core, Pamela high energy positron excess

But what if the dark Z_d⁰ had no couplings at all to the 3 known generations of matter?



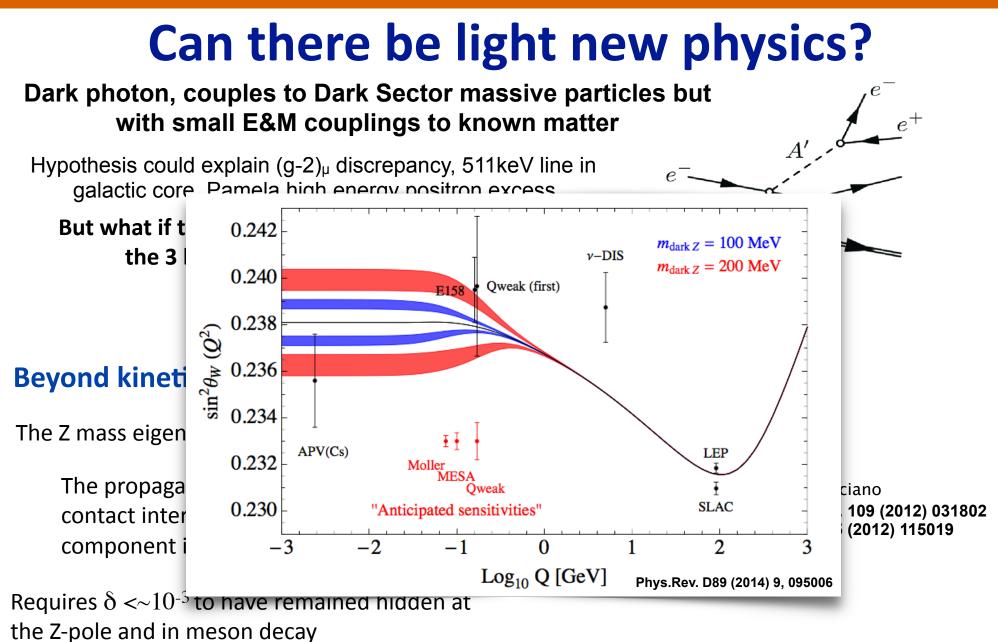
Can there be light new physics?

Dark photon, couples to Dark Sector massive particles but with small E&M couplings to known matter

Hypothesis could explain $(g-2)_{\mu}$ discrepancy, 511keV line in galactic core, Pamela high energy positron excess

But what if the dark Z_d⁰ had no couplings at all to the 3 known generations of matter?

Beyond kinetic mixing: introduce mass mixing with Z⁰


The Z mass eigenstates is mostly Z^o, but with a little bit Z_d⁰

The propagator no longer reduces to the contact interaction for low E PVES, due to light component in the Z⁰ coupling

Davoudiasl, Lee, Marciano Phys.Rev.Lett. 109 (2012) 031802 Phys.Rev. D85 (2012) 115019

Requires $\delta < \sim \! 10^{\text{-}3}$ to have remained hidden at the Z-pole and in meson decay

Complementary to direct heavy photon searches: Lifetime/branching ratio/decay-mode model dependence vs mass mixing assumption

Complementary to direct heavy photon searches: Lifetime/branching ratio/decay-mode model dependence vs mass mixing assumption

Accessing Q_W^P with PVES

Axial-electron / Vector Quark coupling dominates at forward angle, with nucleon structure increasing in importance with increasing momentum-transfer Q²

$$A = \left[\frac{-G_F Q^2}{4\pi\alpha\sqrt{2}}\right] \frac{A_E + A_M + A_A}{\sigma_p}$$

$$A_E = \epsilon G_E^p G_E^Z \qquad A_M = \tau G_M^p G_M^Z \qquad A_A = (1 - 4\sin^2\theta_W)\epsilon' G_M^p \tilde{G}_A^p$$
Forward angle Backward angle

Accessing Q_W^P with PVES

Axial-electron / Vector Quark coupling dominates at forward angle, with nucleon structure increasing in importance with increasing momentum-transfer Q²

$$A = \left[\frac{-G_F Q^2}{4\pi\alpha\sqrt{2}}\right] \frac{A_E + A_M + A_A}{\sigma_p}$$

$$A_E = \epsilon G_E^p G_E^Z \qquad A_M = \tau G_M^p G_M^Z \qquad A_A = (1 - 4\sin^2\theta_W)\epsilon' G_M^p \tilde{G}_A^p$$
Forward angle Backward angle

At small angle and low Q², form-factor and other contributions are small:

$$A_{PV} = -\frac{Q^2 G_F}{4\pi\alpha\sqrt{2}} \left[Q_W^p + Q^2 B(\theta, Q^2) \right]$$

Accessing Q_W^P with PVES

Axial-electron / Vector Quark coupling dominates at forward angle, with nucleon structure increasing in importance with increasing momentum-transfer Q²

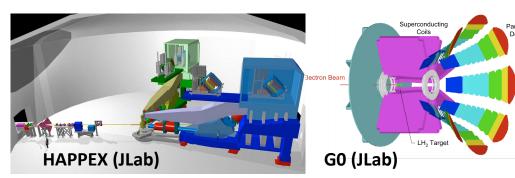
$$A = \begin{bmatrix} -G_F Q^2 \\ 4\pi\alpha\sqrt{2} \end{bmatrix} \frac{A_E + A_M + A_A}{\sigma_p}$$
$$A_E = \epsilon \ G_E^p G_E^Z \qquad A_M = \tau \ G_M^p G_M^Z \qquad A_A = (1 - 4\sin^2\theta_W)\epsilon' \ G_M^p \ \tilde{G}_A^p$$
$$Forward angle \qquad Backward angle$$

At small angle and low Q², form-factor and other contributions are small:

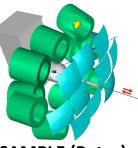
$$A_{PV} = -\frac{Q^2 G_F}{4\pi\alpha\sqrt{2}} \left[Q_W^p + Q^2 B(\theta, Q^2) \right]$$

<u>Qweak</u>

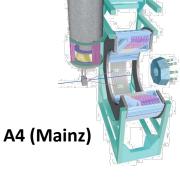
Q²: 0.025 GeV² Beam Energy: 1.16 GeV θ Acceptance: 5.8°-11.6°


$$A_{PV} \sim -230 \text{ ppb}$$

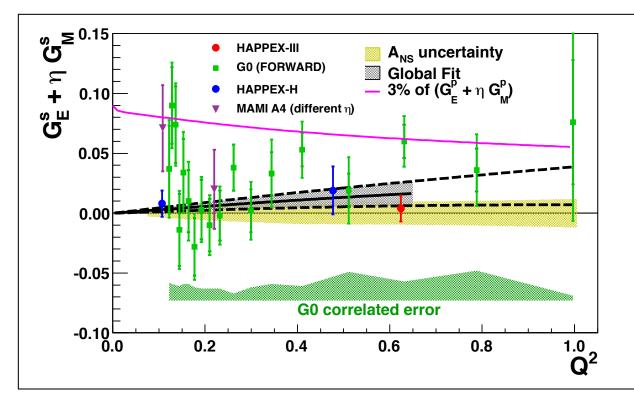
 $\delta(A_{PV}) \sim 5 \text{ ppb}$


Proton structure $B(\theta, Q^2)$ contributes ~30% to A_{PV}

$$\delta Q_W^P = \pm 4\% \qquad \qquad \delta(\sin^2\theta_W) = \pm 0.3\%$$



Weak Vector Form Factors at low Q²



SAMPLE (Bates)

WNC elastic form-factors have been well studied in search of intrinsic nucleonic strangeness

$$G_E^p = \frac{2}{3}G_E^{u,p} - \frac{1}{3}G_E^{d,p} - \frac{1}{3}G_E^s$$
$$G_M^p = \frac{2}{3}G_M^{u,p} - \frac{1}{3}G_M^{d,p} - \frac{1}{3}G_M^s$$

Probing over a range of low-Q², strange effects are small (<3%) and consistent with zero.

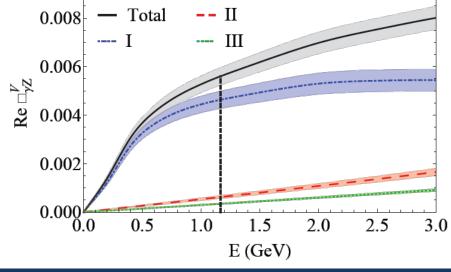
Whatever the cause - proton structure effects in A_{PV} must go to zero at $Q^2 = 0$

Electroweak Corrections

 $Q_W^p = \left[\rho_{NC} + \Delta_e\right] \left| 1 - 4\sin^2 \hat{\theta}_W(0) + \Delta'_e \right| + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}$

new (energy dependent) γZ box corrections must be considered

Authors	Vector Y-Z rad. corr. for Q_W_p
Gorchtein & Horowitz, PRL 102 , 091806 (2009)	0.0026±0.0026
Rislow & Carlson, PRD 83, 113007 (2011)	0.0057±0.0009
Gorchtein, Horowitz, Ramsey-Musolf, PRC 84, 015502 (2011)	0.0054±0.0020
Hall, Blunden, Melnitchouk, Thomas, Young, arXiv:1504.0397	0.0054±0.0004


Significant theoretical work, converging on precise calculation

e(k)

e(k')

p(p')

Ζ

Kent Paschke

 γZ - box is E & Q² dependent

~7% correction at Qweak kinematics, but now well estimated

Similar corrections are required for all data in the fit

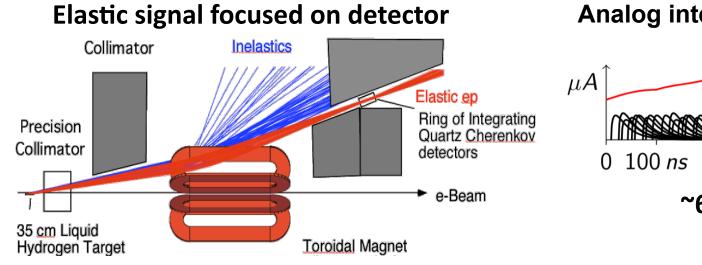
Apparatus

Measuring A_{PV}

Measure fractional rate difference between opposition helicity states

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_R}$$

 $A_{measured} \sim -200 \text{ ppb}$ with 2% precision N ~ 1x10¹⁷ electrons!



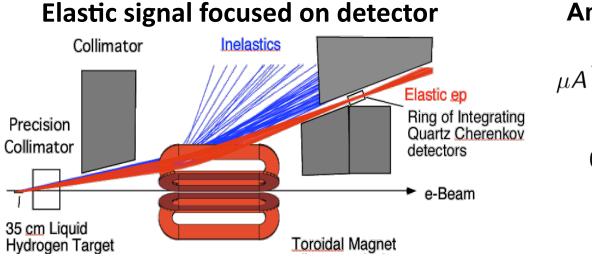
Measuring A_{PV}

Measure fractional rate difference between opposition helicity states

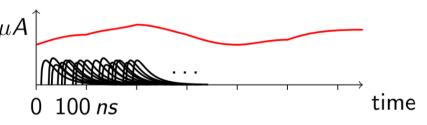
$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_R}$$

 $A_{measured} \sim -200 \text{ ppb}$ with 2% precision N ~ 1x10¹⁷ electrons!

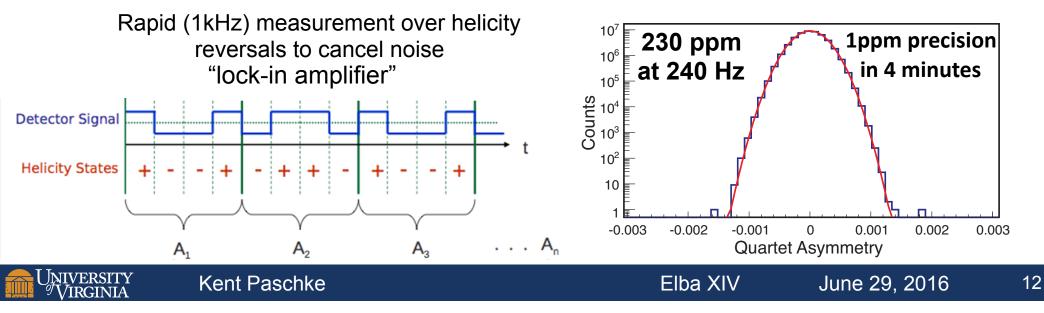
Analog integration of detector current



Measuring A_{PV}


Measure fractional rate difference between opposition helicity states

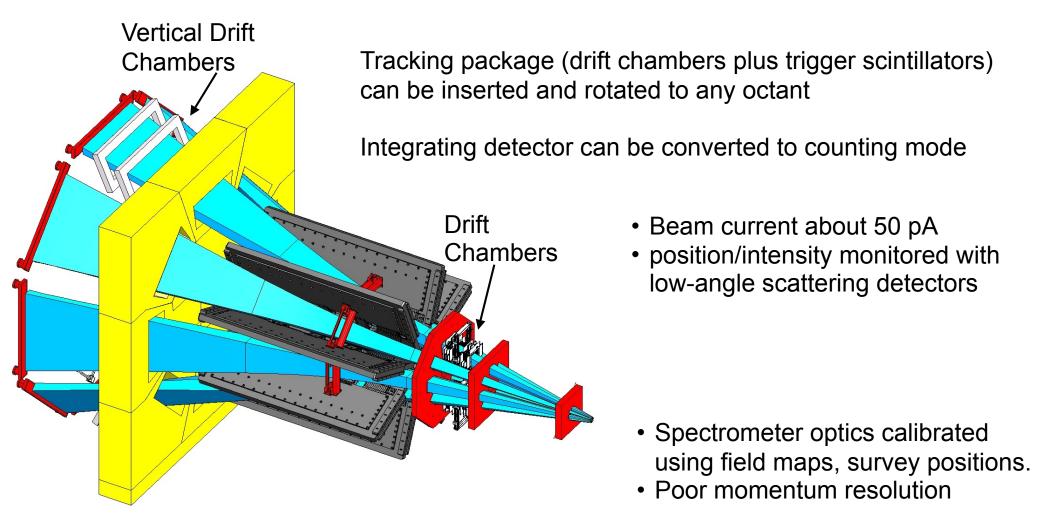
$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_R}$$


A_{measured} ~ -200 ppb with 2% precision N ~ 1×10^{17} electrons!

Analog integration of detector current

~6 GHz total rate

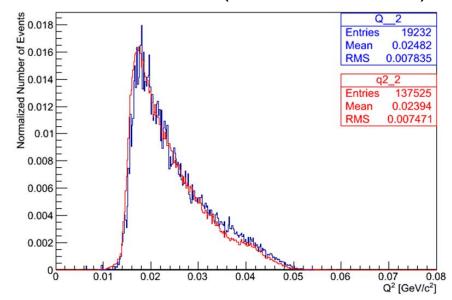
QTor Spectrometer


Goal: Isolate small-angle ep scattered events with large acceptance

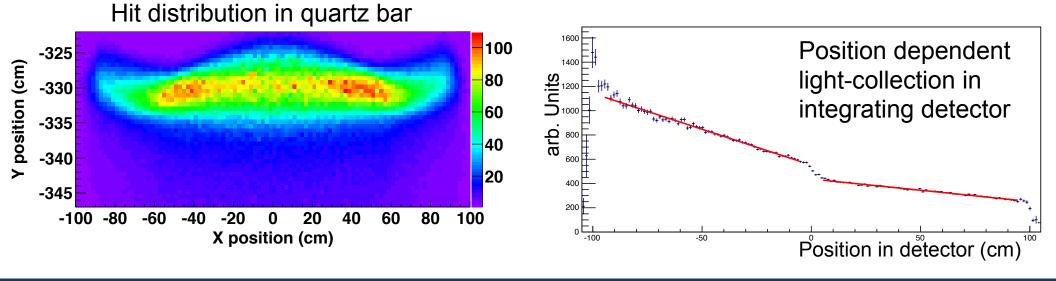
Q²: 0.025 GeV² Beam Energy: 1.16 GeV Quartz θ Acceptance: 5.8°-11.6° Detectors **Polarization: 89%** Current: 180 µA Luminosity: 1.7x10³⁹ cm⁻² s⁻¹ Shielding Collimators Coils

Tracking System for Calibration

Used to verify understanding of kinematics, measure backgrounds



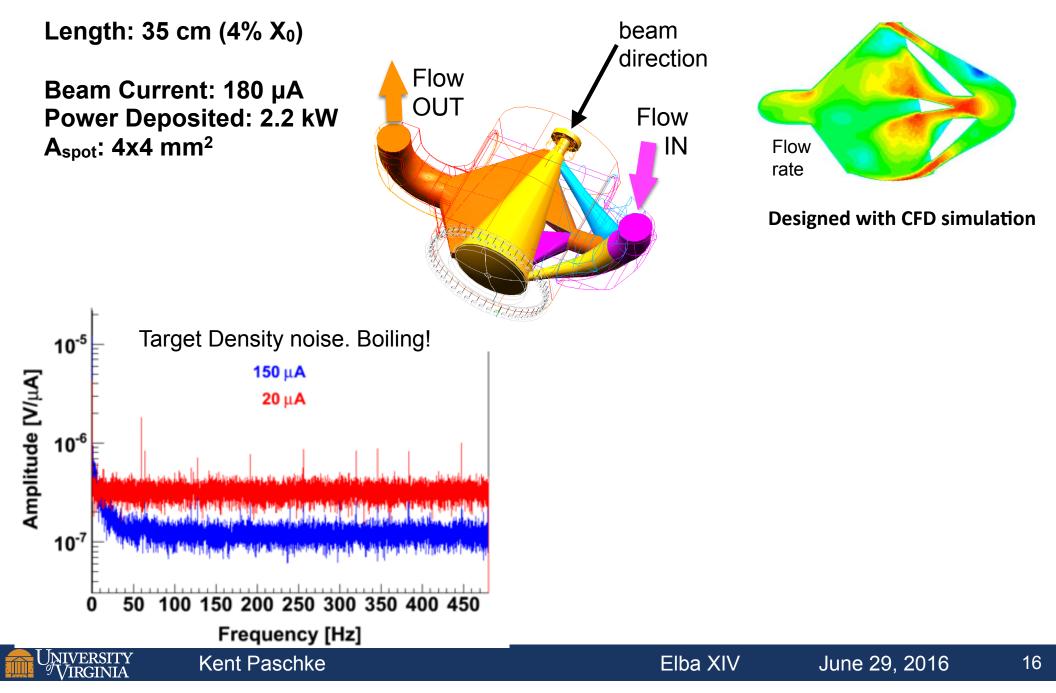
Tracking Calibration


$$\langle A(Q^2)
angle$$
 is measured $A(\langle Q^2
angle)$ is reported

Simulation (using survey, field map) estimates the Q² distribution.

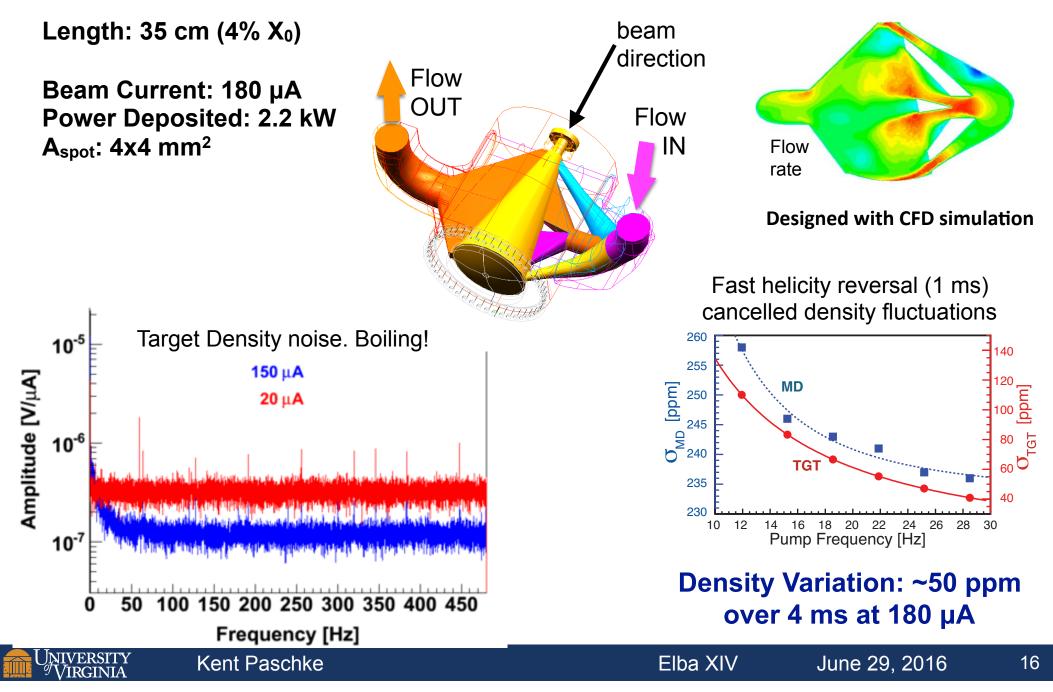
Spatial distributions are verified against tracking distributions

Q² distribution (simulation & data)



NIVERSITY

IRGINIA


Qweak Experimental Target

World's highest power and lowest noise cryogenic target

Qweak Experimental Target

World's highest power and lowest noise cryogenic target

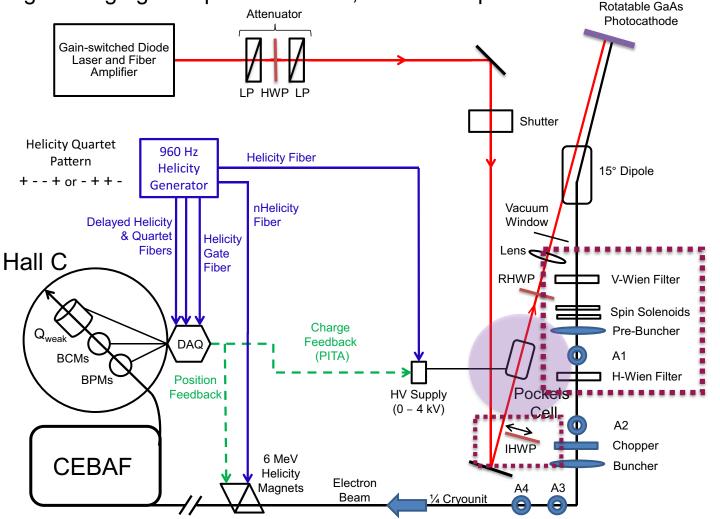
High polarization, high power, long lifetime

- Photoemission from GaAs cathode
- Rapid Helcity reversal: polarization flips at 1 kHz
- Helicity-correlated beam asymmetry: stable at 50 nm under sign flip
- high-voltage gun improved lifetime, beam transport Rotatable GaAs Attenuator Photocathode Gain-switched Diode Laser and Fiber Amplifier LP HWP LP Shutter **Helicity Quartet** 960 Hz **Helicity Fiber** Pattern Helicity 15° Dipole + - - + or - + + -Generator nHelicity Vacuum **Delayed Helicity** Fiber Window & Quartet Helicity **Fibers** Lens c Gate Hall C Fiber RHWP V-Wien Filter Spin Solenoids Charge Q_{weak} Pre-Buncher Feedback DAQ (PITA) A1 BCMs H-Wien Filter BPMs Position | Feedback HV Supply Pockels (0 - 4 kV) Cell A2 Chopper HWP 6 MeV CEBAF Buncher Helicity Electron Magnets A3 A4 Beam 1/4 Crvounit

INIVERSITY

IRGINIA

High polarization, high power, long lifetime

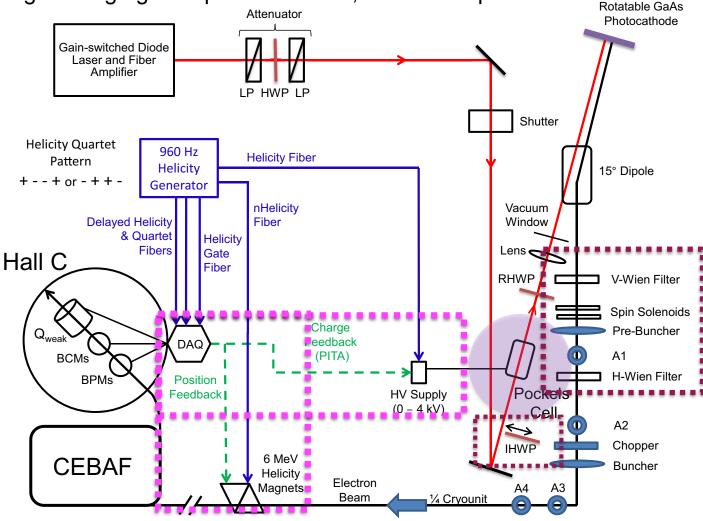

- Photoemission from GaAs cathode
- Rapid Helcity reversal: polarization flips at 1 kHz
- Helicity-correlated beam asymmetry: stable at 50 nm under sign flip
- high-voltage gun improved lifetime, beam transport Rotatable GaAs Attenuator Photocathode Gain-switched Diode Laser and Fiber Amplifier LP HWP LP Shutter **Helicity Quartet** 960 Hz **Helicity Fiber** Pattern Helicity 15° Dipole + - - + or - + + -Generator nHelicity Vacuum **Delayed Helicity** Fiber Window & Quartet Helicity **Fibers** Lens c Gate Hall C Fiber RHWP V-Wien Filter Spin Solenoids Charge Q_{weak} Pre-Buncher Feedback DAQ (PITA) A1 BCMs H-Wien Filter BPMs Position | Feedback **HV** Supply Pockels (0 - 4 kV) Cell A2 Chopper HWP 6 MeV CEBAF Buncher Helicity Electron Magnets A3 A4 Beam 1/4 Crvounit

High polarization, high power, long lifetime

- Photoemission from GaAs cathode
- Rapid Helcity reversal: polarization flips at 1 kHz
- Helicity-correlated beam asymmetry: stable at 50 nm under sign flip
- high-voltage gun improved lifetime, beam transport

Reversals

- Rapid: Pockels cell (1 kHz)
- Insertable waveplate (8 hours)
- Injector spin manipulation (monthly)



NIVERSITY

IRGINIA

High polarization, high power, long lifetime

- Photoemission from GaAs cathode
- Rapid Helcity reversal: polarization flips at 1 kHz
- Helicity-correlated beam asymmetry: stable at 50 nm under sign flip
- high-voltage gun improved lifetime, beam transport

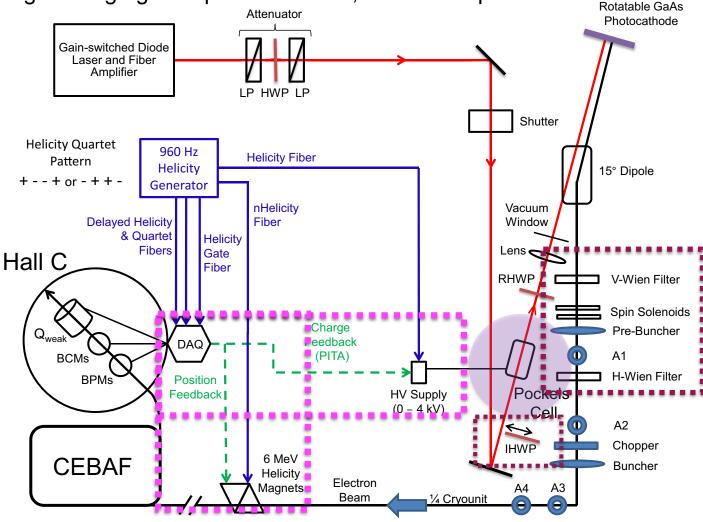
Reversals

- Rapid: Pockels cell (1 kHz)
- Insertable waveplate (8 hours)
- Injector spin manipulation (monthly)

Feedback

Intensity asymmetries feedback adjusted the Pockels cell voltage setpoint (~ 10 ppb)

Position differences


adjusted with air-core dipole magnets in the injector

NIVERSITY

IRGINIA

High polarization, high power, long lifetime

- Photoemission from GaAs cathode
- Rapid Helcity reversal: polarization flips at 1 kHz
- Helicity-correlated beam asymmetry: stable at 50 nm under sign flip
- high-voltage gun improved lifetime, beam transport

Reversals

- Rapid: Pockels cell (1 kHz)
- Insertable waveplate (8 hours)
- Injector spin manipulation (monthly)

Feedback

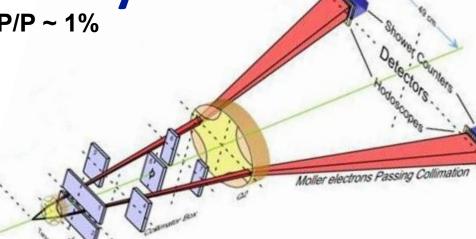
Intensity asymmetries feedback adjusted the Pockels cell voltage setpoint (~ 10 ppb)

Position differences

adjusted with air-core dipole magnets in the injector

Results

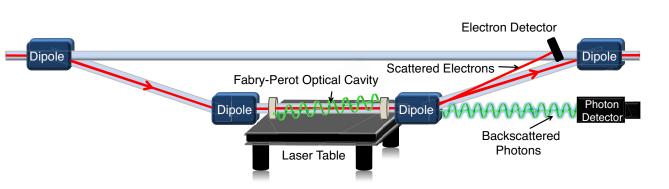
- Injector: ~50 nm
- Hall: ~100 nm
- reversals: ~10 nm
- Feedback: ~1-2 nm

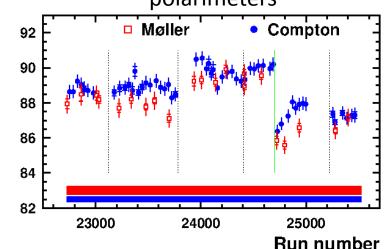

NIVERSITY

IRGINIA

Polarimetry Goal: dP/P ~ 1%

Moller: ee scattering off polarized iron foil


- saturated iron
- experience with ~1% precision in Hall C
- modified spectrometer for 1 GeV
- · invasive, low current only


Polarization (%)

Compton: $e\gamma$ scattering with polarized green laser light

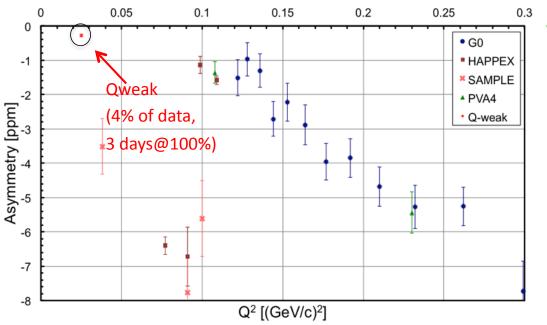
- new polarimeter
- low E_{beam}: low analyzing power, low scattering energies
- diamond microstrip detector
- per mille control of laser polarization inside cavity

Comparison of independent polarimeters

Important milestone for high precision polarimetry needed for future program

Physical Review X6 (2016) no.1, 011013

First Results


Qweak had ~ 1 calendar year of beam split into 3 running periods

Each period had its own "blinding factor" for unbiased analysis

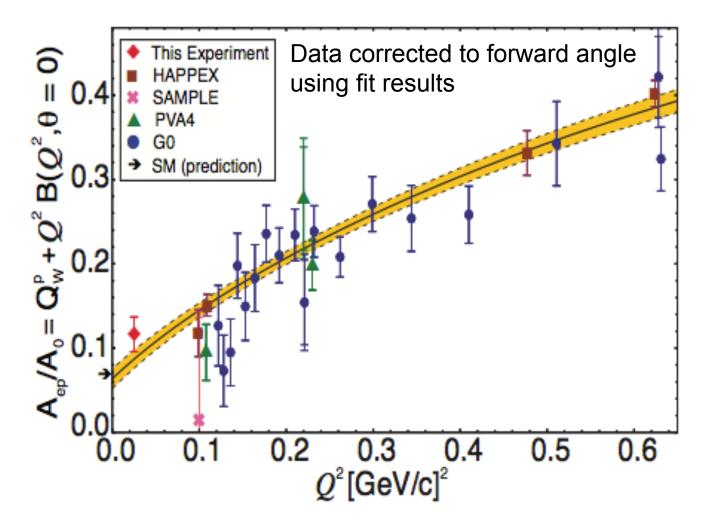
- Run 0: January February 2011 (commissioning data)
- Run 1: February May 2011
- Run 2: November 2011 May 2012

"Run 0" results (about 1/25 of data set) were published in PRL in Oct. 2013

 $A_{PV} = -279 (35)(31) \text{ ppm}$ $Q^2 = 0.0250 \pm 0.0006 (GeV/c)^2$

Significant corrections:

- Aluminum background (3% fraction, but 10x the asymmetry.)
- Transverse polarization

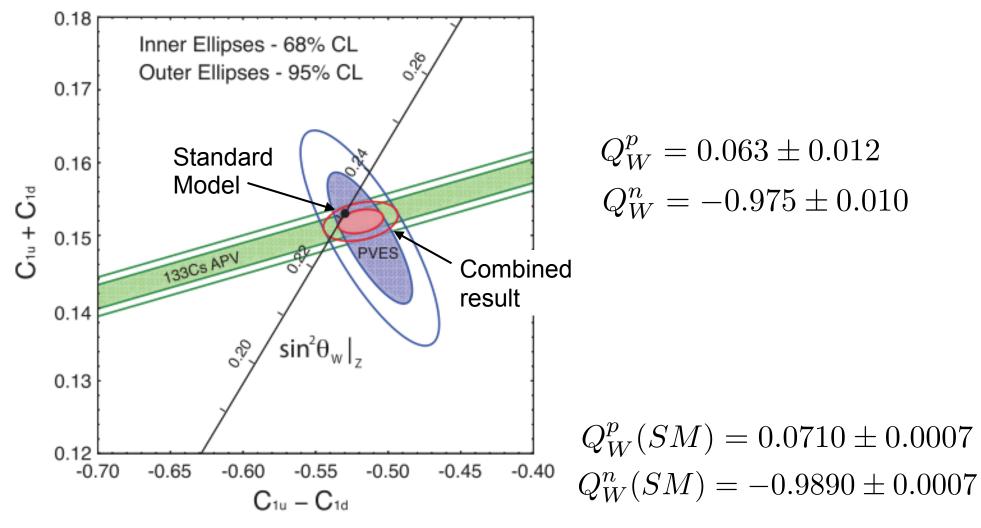

These (and other ancillary measurements) are themselves valuable physics results

- Beam asymmetries
- Beamline background

Required significant work to improve

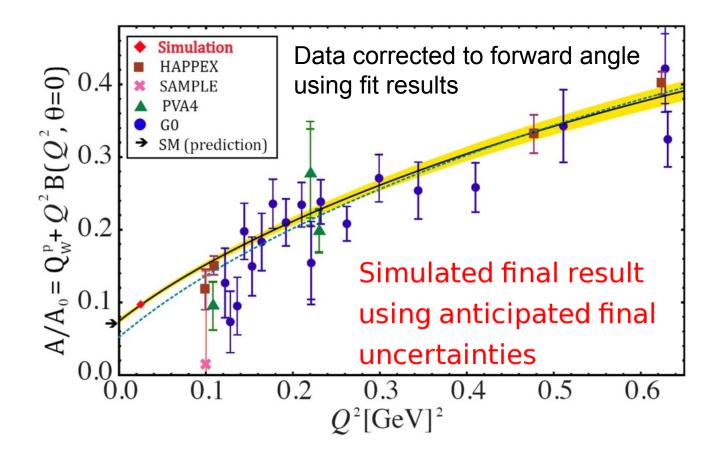
All systematic errors reduced in final data set

Extraction of Q_W^P


Global fit to provide results on Q_w^p

- All nuclear PVES data (hydrogen, deuterium, helium). Uses E&M form-factors.
- 5 parameters (C_{1u}, C_{1d}, isovector axial FF, ρ_s , μ_s)
- Illustration shown here at forward angle.

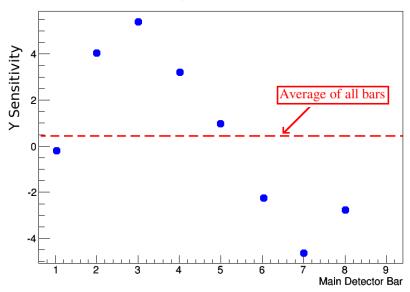
C_{1u}/C_{1d} result


Combined with ¹³³Cs atomic PNC result

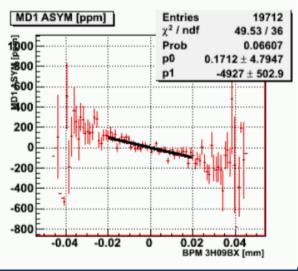
First independent extraction of $Q_{W^{\text{n}}}$

Future precision

Ultimately, the Qweak precision will greatly improve the precision of the fit



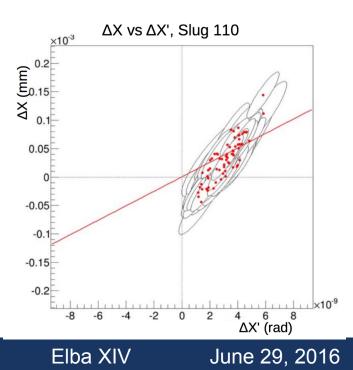
Current Analysis Status



Beam Corrections

Main Detector Sensitivity to Vertical Beam Motion (Run 17504)

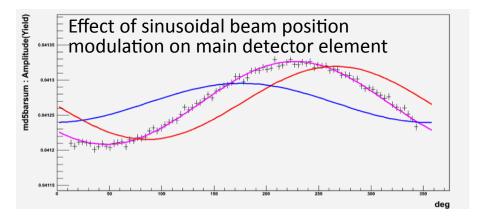
Regression: remove correlation of main detector with beam position "jitter", *i.e.* minimize noise due to beam jitter

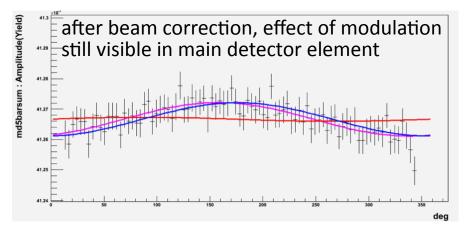


Kent Paschke

 $A_c = A_r - \sum \alpha_i \Delta x_i - \beta A_E$

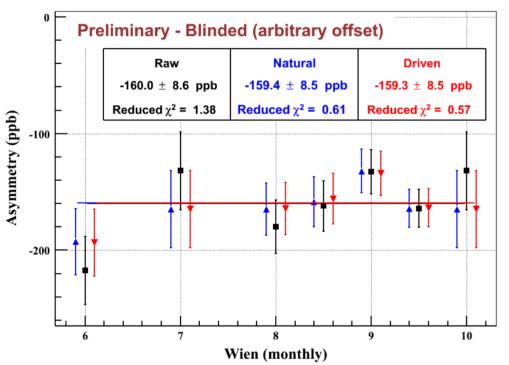
Measurement of the sensitivity of the Main Detector elements to beam motion. The spectrometer provides a high degree of cancellation for beam motion effects.


But if noise and the systematic offset look different, this is potentially misleading


Calibrated Beam Corrections

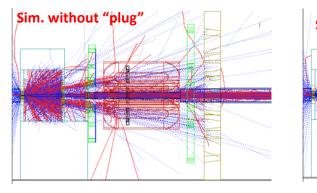
Modulation: calibrate response matrix to controlled beam excursions

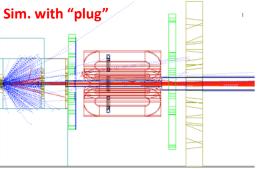
- Periodically run calibration routine, with sinusoidal modulation of the beam using dipole magnets
- Independently calibrate each degree of freedom


But, imperfect implementation led to inconsistent calibration information

In the end:

- gross inconsistencies removed from calibration
- small inconsistencies were shown to be harmless
- corrections were small, agreed between techniques

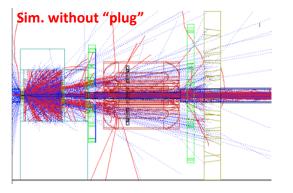

Run2 measured asymmetry

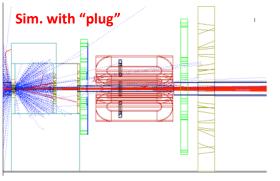


25

Beamline Background

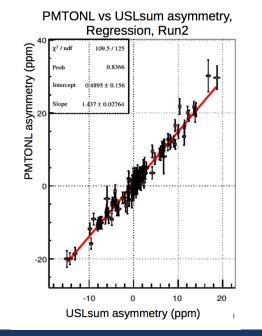
Scattering from the beampipe was recognized as a possible source of background



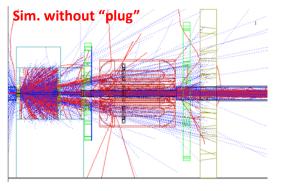

- But collimation didn't fully solve the problem.
- Radiators were added to the main detector to enhance hard scatters and cut soft backgrounds

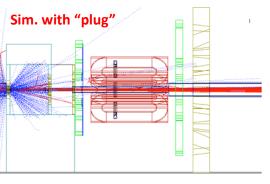
Beamline Background

Scattering from the beampipe was recognized as a possible source of background



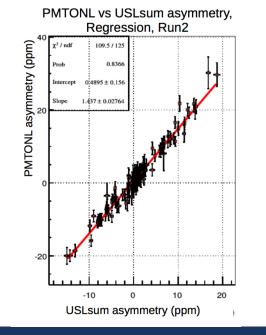
- But collimation didn't fully solve the problem.
- Radiators were added to the main detector to enhance hard scatters and cut soft backgrounds


But then: large asymmetries seen in both small angle monitors and background monitors

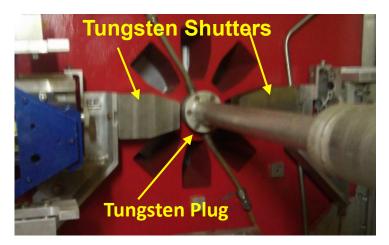

Correlations with MD

Beamline Background

Scattering from the beampipe was recognized as a possible source of background



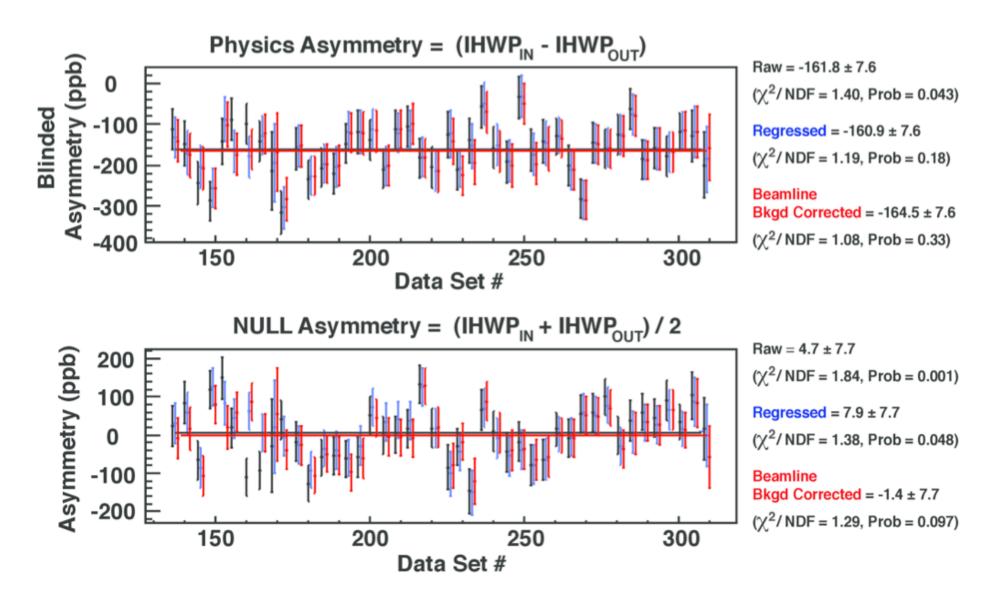
- But collimation didn't fully solve the problem.
- Radiators were added to the main detector to enhance hard scatters and cut soft backgrounds


But then: large asymmetries seen in both small angle monitors and background monitors

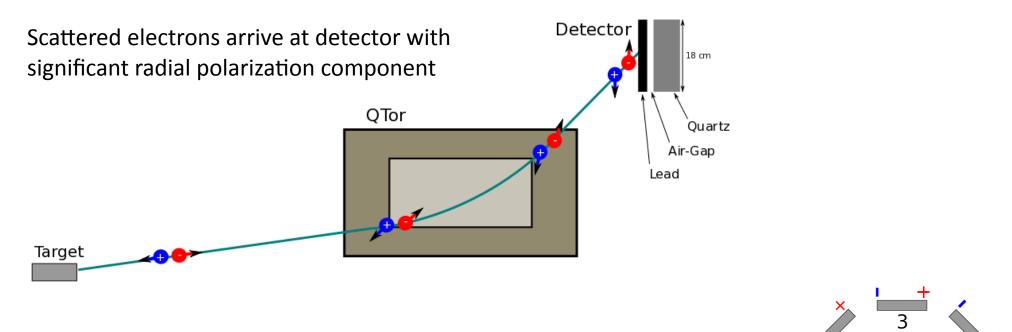
Correlations with MD

Studies (included blocking octants):

- beamline background $f\sim 0.2\%$ in MD
- asymmetry due to beam halo
- asymmetry well measured by background detectors



Scaling of backgrounds over the course of the run, and correlation with main detectors, were stable.


Correction: ~3.5 ppb, ~50% precision

Qweak - Blinded Asymmetries (Run 2)

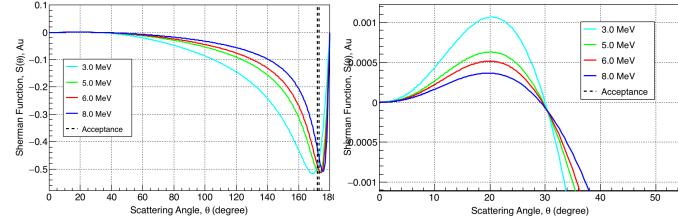
Measured asymmetry, Statistical uncertainty only. Not scale corrected (P_{beam}, backgrounds, etc.)

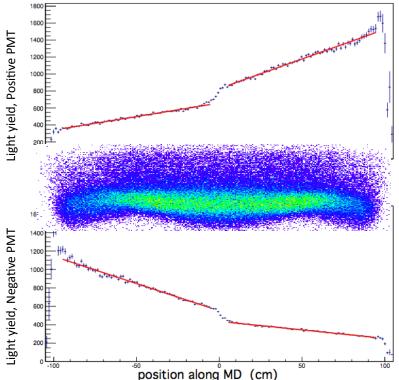
Polarization sensitive detector

Apparent polarization analyzing effect, so that PMTs on opposite ends of each detector bar see opposite sign asymmetry shifts

$$\begin{array}{c} 2 \\ + \\ 1 \\ \times \\ 8 \\ 7 \\ + \\ \end{array}$$

$$A_{PMTDD} = A_{-} - A_{+}$$


At first order, this cancels, since we measure an average of the two PMTs


$$A_{PV} = (A_{-} + A_{+})/2$$

Elba XIV June 29, 2016 28

Polarization sensitive detector

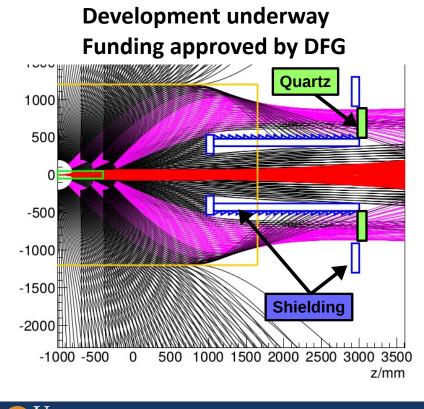
Mott scattering has asymmetry at low energy, so shower through radiator can become polarization-dependent

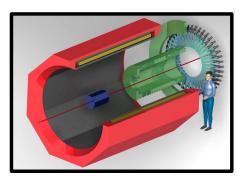
- Imperfect cancellation depends on imperfections in the bar light collection and alignment
- MC simulation is being used to investigate how precisely we know this cancellation

Last significant systematic uncertainty before result is complete

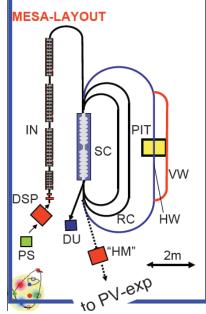
Future Measurements

Beyond Qweak: MESA/P2 at Mainz


$$A_{PV} = -\frac{Q^2 G_F}{4\sqrt{2}\pi\alpha} \left[Q_W^p + F(\theta, Q^2) \right]$$

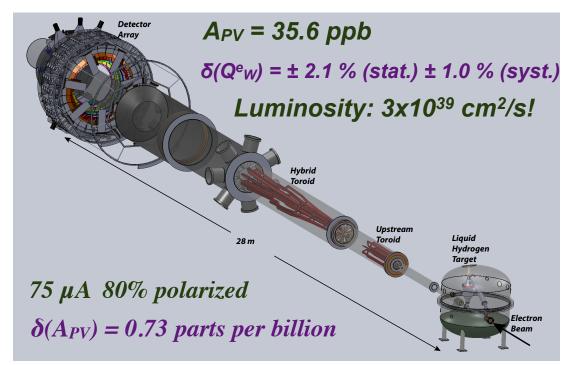

Qweak: proton structure F contributes ~30% to asymmetry, ~2% to $\delta(Q_w^p)/Q_w^p$

Negligible for significantly lower Q²


- rate up 100x, Q^2 down 10x: same FOM of A_{pv} and 2x FOM on Q^2
- reduced sensitivity to radiative corrections and proton structure

MESA: New research machine based on ERL will also support a high-current extracted beam at 100-200 MeV suitable for a PV experiment

- E_{beam} = 155 MeV, 25-45°
- Q² = 0.0045 GeV²
- 60 cm target, 150 uA, 10⁴ hours, 85% polarization
- A_{PV} = -28 ppb to 1.5% (0.4ppb)
- $\delta(\sin^2\theta_W) = 0.13\%$

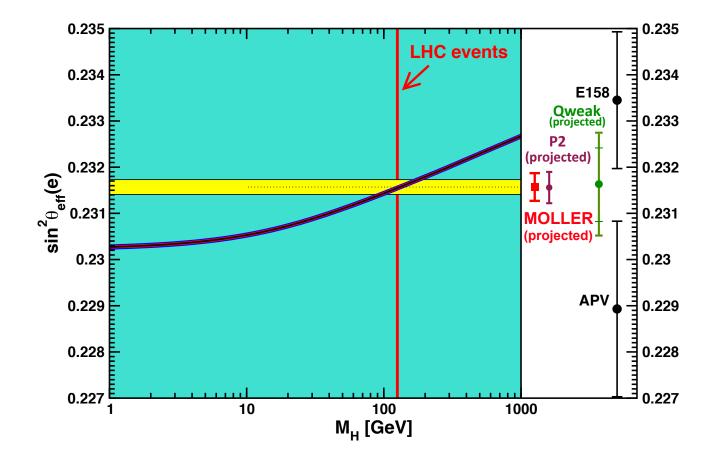


MOLLER at 11 GeV JLab

At 11 GeV, JLab luminosity and stability makes large improvement in Qw^e possible

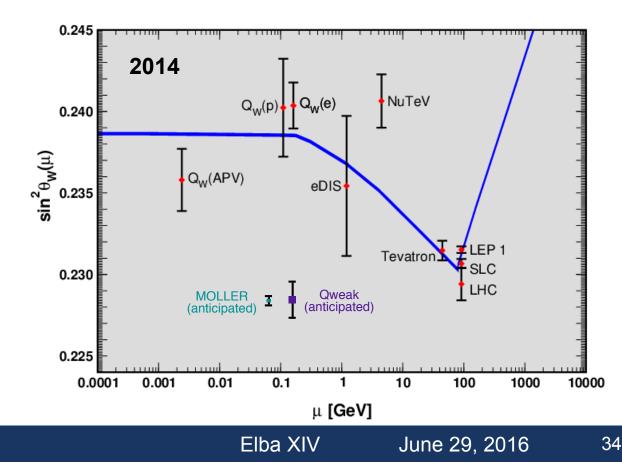
 $\delta(\sin^2 \theta_W) = \pm 0.00028 \text{ (stat)} \pm 0.00012 \text{ (syst)}$

Matches best collider (Z-pole) measurement



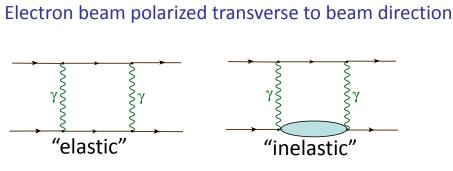
Best contact interaction reach for leptons at low OR high energy

To do better for a 4-lepton contact interaction would require: Giga-Z factory, linear collider, neutrino factory or muon collider


Precision Mixing Angle at Low Q²

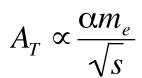
Summary

- The investigation of parity-violation in electron scattering is a powerful tool in the hunt for signatures of physics beyond the Standard Model with a reach into 10's of TeV
- Qweak aims at the most precise measurement of an electron scattering asymmetry ever made.
- A first publication provided an improved measure of the proton weak charge, based on the broad program of weak form-factor measurements
- The final Qweak result is close to complete, work continuing to pin down uncertainty for systematic uncertainties
- Future measurements will continue to add to the reach of this experiments

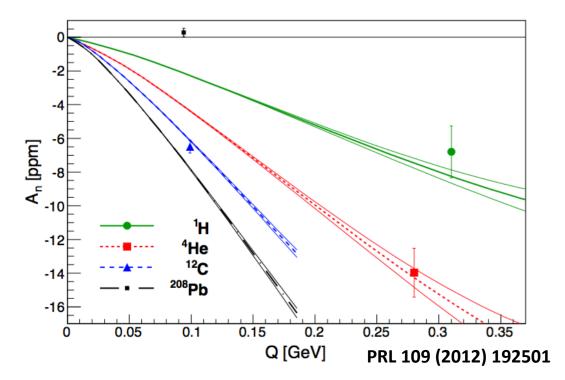


Backup

Transverse Asymmetry


Beam-Normal Asymmetry in elastic electron scattering

Interference between one- and two-photon exchange


- Inelastic intermediate states enhance this asymmetry
- measured for several nuclei
- ~4ppm for Qweak
- Potential systematic error if poorly cancelled
- Well bounded by polarimetry, check on geometric averaging
- Measured also by Qweak, on hydrogen and Aluminum

$$A_T = \frac{2\pi}{\sigma^{\uparrow} + \sigma^{\downarrow}} \frac{d(\sigma^{\uparrow} - \sigma^{\downarrow})}{d\phi} \propto \vec{S}_e \bullet (\vec{k}_e \times \vec{k'}_e)$$

Effect suppressed by

- α
- Lorentz boost

