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Low Q2 offers complementary probes of new physics at multi-TeV scales
 0νββ decay, β decay, EDM, DM, LFV, weak decays, gµ-2…

Parity-Violating Electron Scattering: Low energy weak neutral current couplings, 
precision weak mixing angle  (SLAC, Jefferson Lab, Mainz)
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unpolarized target

σ ∝ |Aγ	+	Aweak|2	
~ |Aγ|2	+	2Aγ(Aweak)*	+…	

⇠ 10�4Q2

L = LSM + Lnew
Heavy Z’s and neutrinos, technicolor, 

compositeness, extra dimensions, SUSY…

Many	new	physics	models	give	rise	to	new	neutral	current	interac+ons

Electromagnetic amplitude 
interferes with Z-exchange as 

well as any new physics
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SLAC	E122	(1978):	First	measurement	of	PVES,	central	to	establishing	SU(2)L	X	U(1)Y

Low Q2 offers complementary probes of new physics at multi-TeV scales
 0νββ decay, β decay, EDM, DM, LFV, weak decays, gµ-2…

Parity-Violating Electron Scattering: Low energy weak neutral current couplings, 
precision weak mixing angle  (SLAC, Jefferson Lab, Mainz)
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Suppression	of	Standard	Model	WNC	vector	coupling	to	the	
proton	enhances	the	sensi8vity	of	parity-viola8ng	

interac8ons	with	the	proton	for	new	physics	

Qp
W = 1� 4 sin2 ✓W ⇠ small
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Zo
Low energy WNC interactions (Q2<<MZ

2)
Heavy	mediators	=	contact	interac8ons
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mass	scale	Λ,	coupling	g	for each fermion and handedness combination	

Eichten, Lane and Peskin, PRL50 (1983)

Consider     or   
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Zo
Low energy WNC interactions (Q2<<MZ

2)
Heavy	mediators	=	contact	interac8ons
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Standard	model	
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new	possible	couplingsA
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Conven8onal	“mass	limits”	in	
precision	measurements	are	
defined	using	a	compositeness	
scale	g2=4π	.	

Following	the	conven8ons	of	Erler	et	al.	(arXiv1401.6199):	
a	4%	measurement	of	QWp	=	2C1u	+	C1d	corresponds	to	a	
mass	limit	of	33	TeV	.



Mixing	Angle	in	Higgs	Era
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Can	there	be	light	new	physics?
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Dark photon, couples to Dark Sector massive particles but 
with small E&M couplings to known matter

Hypothesis could explain (g-2)µ discrepancy, 511keV line in 
galactic core, Pamela high energy positron excess

But	what	if	the	dark	Zd0	had	no	couplings	at	all	to	
the	3	known	genera+ons	of	ma3er?
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Dark photon, couples to Dark Sector massive particles but 
with small E&M couplings to known matter

Hypothesis could explain (g-2)µ discrepancy, 511keV line in 
galactic core, Pamela high energy positron excess

The	Z	mass	eigenstates	is	mostly	Zo,	but	with	a	liYle	bit	Zd0	

The	propagator	no	longer	reduces	to	the	
contact	interac8on	for	low	E	PVES,	due	to	light	
component	in	the	Z0	coupling	

Requires	δ <~10-3	to	have	remained	hidden	at	
the	Z-pole	and	in	meson	decay

Complementary	to	direct	heavy	photon	searches:
Life+me/branching	ra+o/decay-mode	model	
dependence		vs	mass	mixing	assump+on

Beyond	kine+c	mixing:	introduce	mass	mixing	with	Z0

Davoudiasl, Lee, Marciano
Phys.Rev.Lett. 109 (2012) 031802
Phys.Rev. D85 (2012) 115019

But	what	if	the	dark	Zd0	had	no	couplings	at	all	to	
the	3	known	genera+ons	of	ma3er?
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Dark photon, couples to Dark Sector massive particles but 
with small E&M couplings to known matter

Hypothesis could explain (g-2)µ discrepancy, 511keV line in 
galactic core, Pamela high energy positron excess
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Life+me/branching	ra+o/decay-mode	model	
dependence		vs	mass	mixing	assump+on

Beyond	kine+c	mixing:	introduce	mass	mixing	with	Z0

Davoudiasl, Lee, Marciano
Phys.Rev.Lett. 109 (2012) 031802
Phys.Rev. D85 (2012) 115019

But	what	if	the	dark	Zd0	had	no	couplings	at	all	to	
the	3	known	genera+ons	of	ma3er?

Phys.Rev. D89 (2014) 9, 095006 
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Forward angle Backward angle

p

Axial-electron	/	Vector	Quark	coupling	dominates	at	forward	angle,	with	nucleon	
structure	increasing	in	importance	with	increasing	momentum-transfer	Q2
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Forward angle Backward angle

p

Axial-electron	/	Vector	Quark	coupling	dominates	at	forward	angle,	with	nucleon	
structure	increasing	in	importance	with	increasing	momentum-transfer	Q2

At	small	angle	and	low	Q2,	form-factor	
and	other	contribu8ons	are	small:

APV = � Q2GF
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Forward angle Backward angle

p

Axial-electron	/	Vector	Quark	coupling	dominates	at	forward	angle,	with	nucleon	
structure	increasing	in	importance	with	increasing	momentum-transfer	Q2

At	small	angle	and	low	Q2,	form-factor	
and	other	contribu8ons	are	small:

APV = � Q2GF
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Qweak 
Q2: 0.025 GeV2  

Beam Energy: 1.16 GeV 
θ Acceptance: 5.8o-11.6o 

Proton	structure	B(θ,Q2) 
contributes	~30%	to	APV

� 

δ QW
p = ± 4% ⇒ δ(sin2θW ) = ± 0.3%

� 

δ QW
p = ± 4% ⇒ δ(sin2θW ) = ± 0.3%

APV ⇠ �230 ppb

�(APV ) ⇠ 5 ppb



Weak	Vector	Form	Factors	at	low	Q2
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Probing	over	a	range	of	low-Q2,	
strange	effects	are	small	(<3%)	
and	consistent	with	zero.

Whatever	the	cause	-	proton	
structure	effects	in	APV	must	go	

to	zero	at	Q2	=	0

WNC	elas+c	form-factors	have	been	well	studied	in	
search	of	intrinsic	nucleonic	strangeness
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Electroweak	Correc+ons
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Similar corrections are required for 
all data in the fit

Qp
W = [⇢NC +�e]

h
1� 4 sin2 ✓̂W (0) +�0

e

i
+⇤WW +⇤ZZ +⇤�Z

γZ - box is E & Q2 dependent

~7% correction at Qweak 
kinematics, but now well estimated

new	(energy	dependent) γZ	box	correc8ons	must	be	considered

Authors
Vector	Υ-Z	rad.	
corr.	for	Q_W_p

Gorchtein	&	Horowitz,	PRL	102,	091806	(2009) 0.0026±0.0026
Rislow	&	Carlson,	PRD	83,	113007	(2011) 0.0057±0.0009
Gorchtein,	Horowitz,	Ramsey-Musolf,	PRC	84,	015502	(2011) 0.0054±0.0020
Hall,	Blunden,	Melnitchouk,	Thomas,	Young,	arXiv:1504.0397 0.0054±0.0004

Significant theoretical work, 
converging on precise calculation 
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Measuring	APV
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Measure	frac+onal	rate	difference	
between	opposi+on	helicity	states

APV =
�R � �L

�R + �R

Ameasured ~ -200 ppb 
with 2% precision 
N ~ 1x1017 electrons!
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Measure	frac+onal	rate	difference	
between	opposi+on	helicity	states

APV =
�R � �L

�R + �R

Ameasured ~ -200 ppb 
with 2% precision 
N ~ 1x1017 electrons!

Rapid (1kHz) measurement over helicity 
reversals to cancel noise
“lock-in amplifier”
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~6	GHz	total	rate

Analog integration of detector currentElas+c	signal	focused	on	detector



QTor	Spectrometer
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Goal: Isolate small-angle ep scattered events with large acceptance

Collimators

Quartz 
Detectors

Shielding
Coils

Q2: 0.025 GeV2  

Beam Energy: 1.16 GeV 
θ Acceptance: 5.8o-11.6o  

Polarization: 89% 
Current: 180 µA 
Luminosity: 1.7x1039 cm-2 s-1



Tracking	System	for	Calibra+on
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Vertical Drift 
Chambers

Drift 
Chambers

Tracking package (drift chambers plus trigger scintillators) 
can be inserted and rotated to any octant  

Integrating detector can be converted to counting mode

• Beam current about 50 pA  
• position/intensity monitored with 

low-angle scattering detectors

Used to verify understanding of kinematics, measure backgrounds

• Spectrometer optics calibrated 
using field maps, survey positions. 

• Poor momentum resolution



Tracking	Calibra+on
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FULLADCPP
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RMS    47.4316
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Simulation (using survey, field map) 
estimates the Q2 distribution. 
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tracking distributions
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Qweak	Experimental	Target
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World’s highest power and lowest noise cryogenic target
Length: 35 cm (4% X0) 

Beam Current: 180 µA 
Power Deposited: 2.2 kW 
Aspot: 4x4 mm2 

Designed	with	CFD	simula+on

Flow 
rate

Flow 
IN

beam 
direction

Flow 
OUT

Target Density noise. Boiling!
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World’s highest power and lowest noise cryogenic target
Length: 35 cm (4% X0) 

Beam Current: 180 µA 
Power Deposited: 2.2 kW 
Aspot: 4x4 mm2 

Designed	with	CFD	simula+on

Density Variation: ~50 ppm 
over 4 ms at 180 µA
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Source	and	HCBA
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• Photoemission from GaAs cathode 
• Rapid Helcity reversal: polarization flips at 1 kHz 
• Helicity-correlated beam asymmetry: stable at 50 nm 
under sign flip 

• high-voltage gun improved lifetime, beam transport

High polarization, high power, long lifetime
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• Photoemission from GaAs cathode 
• Rapid Helcity reversal: polarization flips at 1 kHz 
• Helicity-correlated beam asymmetry: stable at 50 nm 
under sign flip 

• high-voltage gun improved lifetime, beam transport

High polarization, high power, long lifetime

Position differences 
adjusted with air-core dipole 
magnets in the injector

Intensity asymmetries 
feedback adjusted the 
Pockels cell voltage setpoint 
(~ 10 ppb)

Feedback
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CEBAF 

Hall C 
Helicity 
Gate 
Fiber 

Charge  
Feedback  

(PITA) 

Electron 
Beam 

Helicity Fiber 

LP  HWP  LP 

Qweak 

BCMs 

BPMs 

6 MeV  
Helicity

Magnets 

DAQ 

nHelicity  
Fiber 

Position 
Feedback 

960 Hz 

Helicity 

Generator 

V-Wien Filter 

H-Wien Filter 

Spin Solenoids 

Pre-Buncher 

Chopper 

¼ Cryounit 

Helicity Quartet 

Pa!ern 

+ - - + or - + + - 

Lens 

Buncher 

• Rapid:  Pockels cell (1 kHz) 
• Insertable waveplate (8 hours) 
• Injector spin manipulation (monthly)

Reversals
• Photoemission from GaAs cathode 
• Rapid Helcity reversal: polarization flips at 1 kHz 
• Helicity-correlated beam asymmetry: stable at 50 nm 
under sign flip 

• high-voltage gun improved lifetime, beam transport

High polarization, high power, long lifetime

Position differences 
adjusted with air-core dipole 
magnets in the injector

Intensity asymmetries 
feedback adjusted the 
Pockels cell voltage setpoint 
(~ 10 ppb)

Feedback

• Injector: ~50 nm 
• Hall: ~100 nm 
• reversals: ~10 nm 
• Feedback: ~1-2 nm

Results



Polarimetry
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Backscattered
    Photons

Electron Detector

Laser Table

 Photon 
Detector

Dipole

Fabry-Perot Optical Cavity
Scattered Electrons

Dipole Dipole

Dipole

Moller: ee scattering off polarized iron foil 
• saturated iron 
• experience with ~1% precision in Hall C  
• modified spectrometer for 1 GeV 
• invasive, low current only

Compton: eγ scattering with polarized green laser light 
• new polarimeter 
• low Ebeam: low analyzing power, low scattering energies 
• diamond microstrip detector 
• per mille control of laser polarization inside cavity

Comparison	of	independent	
polarimeters

Goal: dP/P ~ 1%

Physical	Review	X6	(2016)	no.1,	011013

Important	milestone	for	high	
precision	polarimetry	needed	

for	future	program



First	Results

Kent Paschke June 29, 2016Elba XIV 19

“Run 0” results (about 1/25 of data set) were published in PRL in Oct. 2013

Significant corrections: 
• Aluminum background (3% fraction, but 

10x the asymmetry.) 
• Transverse polarization

Qweak had ~ 1 calendar year of beam split into 3 running periods 
Each period had its own “blinding factor” for unbiased analysis 

• Run 0: January – February 2011 (commissioning data)  
• Run 1: February – May 2011 
• Run 2: November 2011 – May 2012

Q2 = 0.0250 ± 0.0006 (GeV/c)2

APV = -279 (35)(31) ppm

Qweak		
(4%	of	data,	
3	days@100%)	 • Beam asymmetries 

• Beamline background

These (and other ancillary measurements) 
are themselves valuable physics results

Required significant work to improve

All systematic errors reduced in final data set



Extrac+on	of	QWP
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Global fit to provide results on Qwp 
• All nuclear PVES data (hydrogen, deuterium, helium). Uses E&M form-factors. 
• 5 parameters (C1u, C1d, isovector axial FF, ρs, µs) 
• Illustration shown here at forward angle.

Data corrected to forward angle 
using fit results



C1u/C1d	result
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Combined with 133Cs atomic PNC result 

Qp
W = 0.063± 0.012

Qn
W = �0.975± 0.010

Qn
W (SM) = �0.9890± 0.0007

Qp
W (SM) = 0.0710± 0.0007

Combined 
result

Standard 
Model

First independent extraction of QWn



Future	precision
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Ultimately, the Qweak precision will greatly improve the precision of the fit 

Data corrected to forward angle 
using fit results



Current	Analysis	Status
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Beam	Correc+ons
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Measurement of the sensitivity of the 
Main Detector elements to beam 
motion.  The spectrometer provides a 
high degree of cancellation for beam 
motion effects.

Regression: remove correlation of main 
detector with beam position “jitter”, 

i.e. minimize noise due to beam jitter

But if noise and the systematic offset look 
different, this is potentially misleading

Ac = Ar �
X

↵i�xi � �AE



Calibrated	Beam	Correc+ons

Kent Paschke June 29, 2016Elba XIV 25

Modulation: calibrate response matrix to controlled beam excursions

But,	imperfect	implementa8on	led	to	
inconsistent	calibra8on	informa8on

In	the	end:	
• gross	inconsistencies	removed	from	calibra8on	
• small	inconsistencies	were	shown	to	be	harmless	
• correc8ons	were	small,	agreed	between	techniques

• Periodically	run	calibra8on	rou8ne,	with	sinusoidal	modula8on	of	the	beam	using	dipole	magnets	
• Independently	calibrate	each	degree	of	freedom

arer	beam	correc8on,	effect	of	modula8on	
s8ll	visible	in	main	detector	element

Effect	of	sinusoidal	beam	posi8on	
modula8on	on	main	detector	element	



Beamline	Background
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Sim.	without	“plug”

ScaYering	from	the	beampipe	was	recognized	
as	a	possible	source	of	background

Sim.	with	“plug”

• But	collima8on	didn’t	fully	solve	the	problem.		
• Radiators	were	added	to	the	main	detector	to	
enhance	hard	scaYers	and	cut	sor	backgrounds
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• But	collima8on	didn’t	fully	solve	the	problem.		
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both small angle 
monitors and 
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Correlations with MD
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Sim.	without	“plug”

ScaYering	from	the	beampipe	was	recognized	
as	a	possible	source	of	background

Sim.	with	“plug”

• But	collima8on	didn’t	fully	solve	the	problem.		
• Radiators	were	added	to	the	main	detector	to	
enhance	hard	scaYers	and	cut	sor	backgrounds

But then: large 
asymmetries seen in 
both small angle 
monitors and 
background monitors 

Correlations with MD

Studies	(included	blocking	octants):		
• beamline	background	f ~ 0.2%	in	MD	
• asymmetry	due	to	beam	halo	
• asymmetry	well	measured	by	
background	detectors

Scaling of backgrounds over the 
course of the run, and correlation 
with main detectors, were stable. 

Correction: ~3.5 ppb, ~50% precision

Tungsten	Plug

Tungsten Shutters



Qweak	-	Blinded	Asymmetries	(Run	2)
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Measured asymmetry,Statistical uncertainty only.  
Not scale corrected (Pbeam, backgrounds, etc.)



Polariza+on	sensi+ve	detector
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ScaYered	electrons	arrive	at	detector	with	
significant	radial	polariza8on	component

PT

PT
APMTDD = A� �A+

Ameas = A� +A+

Apparent	polariza8on	analyzing	effect,	so	that	
PMTs	on	opposite	ends	of	each	detector	bar	see	
opposite	sign	asymmetry	shirs

APMTDD = A� �A+

APV = (A� +A+)/2

At	first	order,	this	cancels,	since	we	measure	an	average	of	the	two	PMTs



Polariza+on	sensi+ve	detector
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MoY	scaYering	has	asymmetry	
at	low	energy,	so	shower	
through	radiator	can	become	
polariza8on-dependent

Li
gh
t	y

ie
ld
,	P
os
i8
ve
	P
M
T

Li
gh
t	y

ie
ld
,	N

eg
a8

ve
	P
M
T

Last significant systematic uncertainty 
before result is complete

• Imperfect	cancella8on	depends	on	imperfec8ons	in	the	
bar	light	collec8on	and	alignment	

• MC	simula8on	is	being	used	to	inves8gate	how	
precisely	we	know	this	cancella8on



Future	Measurements
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Beyond	Qweak:	MESA/P2	at	Mainz
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• rate	up	100x,	Q2	down	10x:	same	FOM	of	Apv	and	2x	FOM	on	Q2	
• reduced	sensi8vity	to	radia8ve	correc8ons	and	proton	structure

Qweak:	proton	structure	F contributes	~30%	to	
asymmetry, ~2%	to	δ(QW

p)/	QW
p

Negligible	for	significantly	lower	Q2

31

• Ebeam	=	155	MeV,	25-45o		
• Q2	=	0.0045	GeV2	
• 60	cm	target,	150	uA,	104	hours,	
85%	polariza8on	

• APV	=	-28	ppb	to	1.5%	(0.4ppb)	
• δ(sin2θW)	=	0.13%	

Development	underway	
Funding	approved	by	DFG

  

Beam energy = 155 MeV
Moller,      θ є [ 0°, 90°]
Elastic e-p, θ є [25°, 45°]
Elastic e-p, θ є [ 0°, 90°]

Magnetic field:
0.6 T

Raytrace simulations in the magnetic field

Shielding

Quartz

  

Beam energy = 155 MeV
Moller,      θ є [ 0°, 90°]
Elastic e-p, θ є [25°, 45°]
Elastic e-p, θ є [ 0°, 90°]

Magnetic field:
0.6 T

Raytrace simulations in the magnetic field

Shielding

Quartz
MESA:	New	research	machine	based	on	ERL	will	also	support	a	high-current	

extracted	beam	at	100-200	MeV	suitable	for	a	PV	experiment



MOLLER	at	11	GeV	JLab
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At 11 GeV, JLab luminosity and stability 
makes large improvement in QWe possible

Matches	best	collider	(Z-pole)	measurement	

Liquid 
Hydrogen
Target

Upstream
Toroid

Hybrid
Toroid

Detector
Array

Electron
Beam

28 m

APV = 35.6 ppb
δ(QeW) = ± 2.1 % (stat.) ± 1.0 % (syst.) 

Luminosity: 3x1039 cm2/s!

δ(APV) = 0.73 parts per billion
75 μA 80% polarized

Best contact interaction reach for leptons at low OR high energy
To do better for a 4-lepton contact interaction would require:  

Giga-Z factory, linear collider, neutrino factory or muon collider

�(sin2 ✓W ) = ±0.00028 (stat)± 0.00012 (syst)



Precision	Mixing	Angle	at	Low	Q2
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Summary
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• The	inves8ga8on	of	parity-viola8on	in	electron	scaYering	is	a	powerful	tool	in	the	hunt	
for	signatures	of	physics	beyond	the	Standard	Model	with	a	reach	into	10’s	of	TeV	

• Qweak	aims	at	the	most	precise	measurement	of	an	electron	scaYering	asymmetry	ever	
made.		

• A	first	publica8on	provided	an	improved	measure	of	the	proton	weak	charge,	based	on	
the	broad	program	of	weak	form-factor	measurements	

Qweak!
(anticipated)

MOLLER!
(anticipated)

• The	final	Qweak	result	is	close	to	
complete,	work	con8nuing	to	pin	
down	uncertainty	for	systema8c	
uncertain8es	

• Future	measurements	will	
con8nue	to	add	to	the	reach	of	
this	experiments

2014



Backup



Transverse	Asymmetry
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€ 

AT ≡
2π

σ↑ +σ↓

d(σ↑ −σ↓)
dφ

∝ S
→

e• (k
→

e× k'
→

e )

Beam-Normal	Asymmetry	in	elastic	electron	scattering

Electron	beam	polarized	transverse	to	beam	direction

Interference between one- and 
two-photon exchange

€ 

AT ∝
αme

s

Effect	suppressed	by		
•	α	
•	Lorentz	boost

“elastic” “inelastic”

• Inelastic intermediate states 
enhance this asymmetry 

• measured for several nuclei 
• ~4ppm for Qweak  
• Potential systematic error if 

poorly cancelled 
• Well bounded by polarimetry, 

check on geometric averaging 
• Measured also by Qweak, on 

hydrogen and Aluminum PRL	109	(2012)	192501


