Elba XIV, June 27th – July 1st, 2016

Supernova neutrino: prediction and detection

Shunsaku Horiuchi (Center for Neutrino Physics, Virginia Tech)

Image credit: NASA/ESA

Neutrinos as cosmic messengers

Only neutrinos, with their extremely small interaction cross sections, can enable us to see into the interior of a star...

John N. Bahcall, *Phys. Rev. Lett.* **12**, 303 (1964)

• allow us to see optically thick (to photons) regions

Neutrinos:

- experience little attenuation through cosmic space
 - probes unrivaled extreme environments
 - direct hadronic indicator

Neutrino detection is difficult; has been addressed by detectors, e.g., IceCube, Super-Kamiokande, and many others

Massive stars core collapse

Core-collapse supernovae

Energy budget ~ 3 x 10⁵³ erg 99% into neutrinos (0.01% into photons)

R: $\partial \partial \partial g$ km \rightarrow 20 km $\rho: \sim 10^9$ g cm⁻³ $\rightarrow \sim 10^{14}$ g cm⁻³ T: $\sim 10^{10}$ K $\rightarrow \sim 30$ MeV

Horiuchi (Virginia Tech)

Adapted from slides by G. Raffelt ₄

SN1987A as an example

The explosion mechanism

Stalled shock: The shock stalls, pressure inside balanced by ram pressure outside:

$$p = \rho \Delta v^2$$

The neutrino mechanism: deposit a fraction of the energy in neutrinos via capture on free neutrons & protons

Bethe & Wilson (1985), Colgate et al (1966), ...

Importance of asphericity

Elba XIV

Systematic core-collapse simulations

Sophisticated simulations [no systematic studies yet]

- 3D with neutrino transport
- Few progenitor models
- Address: explosibility, neutrino and gravitational wave signals

Hanke et al (2013, 2014), Melson et al (2015), Lentz et al (2015), Takiwaki et al (2016) ...

First systematic studies in spherically symmetry

- Spherically symmetric with parameterized neutrino heating
- ~700 progenitor models
- GR gravity
- Address: progenitor dependence, black hole formation

Ugliano et al (2012), O'Connor & Ott (2011, 2013), Ertl et al (2015)

Recent systematic study in axis-symmetry

- Axis-symmetric with simplified neutrino transport (IDSA)
- ~400 progenitor models
- Newtonian gravity
- Address: progenitor dependence, SASI, other observables (M_{Ni}, etc)

Nakamura et al (2014)

Explodability and compactness

Compactness: is a useful indicator to discuss the eventual outcome of core collapse

$$\xi = \frac{M/M_{\odot}}{R(M_{\text{bary}} = M)/1000 \,\text{km}} \bigg|_{t}$$

Black hole formation occurs more readily for larger compactness.

Successful / failed explosion threshold occurs approximately $\xi_{2.5} \sim 0.45$

(and explosions for $\xi_{2.5} < 0.15$)

Pejcha & Thompson (2015), Ertl et al (2015) Flba XIV

Horiuchi (Virginia Tech)

9

Results in 2D

Critical compactness in 2D

Limitation:

 2D setup is conducive to explosions

e.g., Hanke et al (2012)

- Remnants above 2.4 Msun baryonic mass not realistic and may not explode in reality.
- → Critical $\xi_{2.5} < \sim 0.4 0.5$

Critical compactness $\xi_{2.5}$ In 1D: 0.35 – 0.45 In 2D: < 0.4 – 0.5

Horiuchi et al (2014)

Neutrino emission in black hole formation

Liebendoerfer et al (2004)

Neutrino emission:

Black hole necessarily goes through rapid mass accretion $\rightarrow v$ emission is more luminous and hotter (EOS dependent)

> Sumiyoshi et al 2006, 2007, 2008, 2009 Fischer et al 2009 Nakazato et al 2008, 2010, 2012 Sekiguchi & Shibata 2011 O'Connor & Ott 2011 Plus various others

Neutrino termination:

Neutrino detectors can directly detect the moment of black hole formation (if it occurs during the first O(10) seconds)

Beacom et al (2001)

What is the failed collapse rate?

Expected to be low (<7%) among solar metallicity stars.

But it may be higher: many recent hints suggest the rate could be higher

Supernova rate

Red supergiant problem

Black hole mass function

Survey about nothing

O'Connor & Ott (2011)

~**20-30%** Smartt et al (2009) Flba XIV ~20-30% ~ Kochanek et al (2014) Ha Horiuchi (Virginia Tech)

Remnant Mass (M_o)

~**10-30%** *Horiuchi et al (2010)* ^{ch)}

Redshift z

0.6

0.4

0.1

0

0.2

~**10-40%** Gerke et al (2014)

1. Red supergiant problem

Some stars don't explode?

Observationally, the red supergiants with mass 16 – 25 Msun are not exploding

This is \sim 20% of massive stars.

The mass range in question is an island of

2. Black hole mass function

Compact object mass function: There are hints of a dearth of compact black holes just above the NS mass range

A critical compactness $\xi_{2.5}$ ~0.2 predicts a black hole mass function with a cutoff

e.g., Kreidberg et al. (2012), Kizeltan et al. (2013) Elba XIV Horiuchi (Virginia Tech)

Lovegrove & Woosley 2013, Kochanek (2014)

3. Cosmic core-collapse rate

Birth rate of massive stars From many observations (hundreds)

Observed supernova rate Derived from observations of <u>luminous</u> supernovae (many recent updates)

(Core-collapse rate) – (supernova rate) = DIM or DARK collapse rate

Approximately 30 – 50 %

- Some of this can be due to collapse to black holes.
- Other possibilities include ONeMg collapse, dust (especially from mass loss), fall back intense collapse, etc

Correction due to dim supernovae

Dust extinction distribution

Large uncertainty from dust attenuation \rightarrow better model raises CCSN rate 30-50%

Elba XIV

4. Searching for failed explosions: Survey about nothing

Survey About Nothing

- Look for the disappearance of redsupergiants in nearby galaxies
- Monitor 27 galaxies with the Large Binocular Telescope
 - → $\sim 10^6$ red supergiants with luminosity > 10^4 Lsun
 - \rightarrow expect ~1 core collapse /yr
 - → In 10 years, sensitive to 20 –
 30% failed fraction at 90%CL

Kochanek et al. (2008)

Gerke et al. (2015)

Results so far:

In 4 years running,

- 3 luminous CC supernovae: SN2009dh, SN2011dh, SN2012fh
- 1 Type Ia (SN2011fe)
- 1 candidate failed supernova: NGC6946-BH1 (@~6Mpc)

→ Peak failed collapse rate 10 – 40%

Note: the candidate's mass estimate is 18–25 Msun (!) Gerke et al. (2015)

NEUTRINO PROBES

Modern neutrino detectors

MiniBooNE (800 ton LqSc) Nova (15 kton LqSc) SNO+ (800 ton LqSc) HALO (76 ton Pb) [DUNE (~34 kton LAr)]

[RENO (~18 kton LqSc)]

Super-Kamiokande (32 kton H_2O) EGADS (200 ton $H_2O + Gd$) KamLAND (1 kton LqSc) [Hyper-Kamiokande (~0.6 Mton H_2O)]

Neutrino detection: Cherenkov

Super-Kamiokande

- Each OM has intrinsic noise of ~300 Hz
- Supernova at 10 kpc yields ~200 (L/10⁵² erg/s) Hz hits per OM
- Supernova appears as correlated noise in 5000
 OMs
 e.g., Halzen et al (1995)

Distance scales and physics outcomes

Adapted from Beacom (2012)

	Galactic burst	Mini-bursts	Diffuse signal
Physics reach	Explosion mechanism, astronomy	supernova variety with individual ID	Average emission, multi-populations
Required detector	Basics are covered	Next generation	Upcoming upgrades

Supernova neutrino detection

High number statistics expected from a Galactic core collapse (at 10 kpc distance)

Detector	Type	Mass (kt)	Location	Events	Flavors	Status
Super-Kamiokande	H_2O	32	Japan	7,000	$\bar{\nu}_e$	Running
LVD	$C_n H_{2n}$	1	Italy	300	$\bar{ u}_e$	Running
KamLAND	$C_n H_{2n}$	1	Japan	300	$\bar{ u}_e$	Running
Borexino	$C_n H_{2n}$	0.3	Italy	100	$\bar{ u}_e$	Running
IceCube	Long string	(600)	South Pole	(10^{6})	$\bar{\nu}_e$	Running
Baksan	$C_n H_{2n}$	0.33	\mathbf{Russia}	50	$\bar{ u}_e$	Running
$MiniBooNE^*$	$C_n H_{2n}$	0.7	USA	200	$\bar{ u}_e$	(Running)
HALO	\mathbf{Pb}	0.08	Canada	30	$ u_e, u_x$	Running
Daya Bay	$C_n H_{2n}$	0.33	China	100	$\bar{ u}_e$	Running
$NO\nu A^*$	$C_n H_{2n}$	15	USA	4,000	$\bar{\nu}_e$	Turning on
SNO+	$C_n H_{2n}$	0.8	Canada	300	$\bar{ u}_e$	Near future
MicroBooNE*	Ar	0.17	USA	17	ν_e	Near future
DUNE	Ar	34	USA	3,000	ν_e	Proposed
Hyper-Kamiokande	H_2O	560	Japan	110,000	$\bar{\nu}_e$	Proposed
JUNO	$C_n H_{2n}$	20	China	6000	$\bar{\nu}_e$	Proposed
RENO-50	$C_n H_{2n}$	18	Korea	5400	$\bar{\nu}_e$	Proposed
LENA	$C_n H_{2n}$	50	Europe	15,000	$\bar{ u}_e$	Proposed
PINGU	Long string	(600)	South Pole	(10^6)	$\bar{ u}_e$	Proposed

Mirizzi et al (2015)

Observing the SASI mechanism

Tamborra et al (2013), see also Lund et al (2010, 2012), based on Hanke et al (2013)

Measuring the compactness

Events light curve at SK:

See a clear dependence on the ξ , which drives the accretion history

The ratio of events:

is useful in light of systematic uncertainties. Many choices of time bins for specific $\boldsymbol{\xi}$

Distance scales and physics outcomes

Adapted from Beacom (2012)

	Galactic burst	Mini-bursts	Diffuse signal
Physics reach	Explosion mechanism, astronomy	supernova variety with individual ID	Average emission, multi-populations
Required detector	Basics are covered	Next generation	Upcoming upgrades

Diffuse Supernova Neutrino Background

Input 1: Time-integrated neutrino signal

Neutrino emission: Black hole cuts off the neutrino emission, but it necessarily goes through rapid mass accretion $\rightarrow v$ emission is more luminous and hotter (EOS dependent)

Liebendoerfer et al 2004, Fischer et al 2009, Sumiyoshi et al 06, 07, 08, 09, Nakazato et al 2008, 2010, O'Connor & Ott 2011, ...

Input 2: cosmic core-collapse rate

Core-collapse rate From the birth rate of massive stars

Observed supernova rate Derived from observations of <u>luminous</u> supernovae (many recent updates)

(Core-collapse rate) – (supernova rate) = DIM or DARK collapse rate

Approximately 30 – 50 %

- Some of this can be due to collapse to black holes.
- Other possibilities include ONeMg collapse, dust (especially from mass loss), fall back intense collapse, etc

Predictions

Diffuse neutrino fluxes:

Lunardini (2009); Lien et al (2010),Keehn & Lunardini (2010), Nakazato (2013), Yuksel & Kistler (2014)

Event rate at SK (22.5 kton FV):

Spectrum	18 MeV threshold [/yr]
4 MeV	0.4 +/- 0.1
4 MeV+BH	< 1.8
SN1987A	0.5 +/- 0.1

Event spectra with uncertainties: Assuming 30% collapse to black holes

Adapted from Horiuchi et al (2009)

Searches and forecast

Background-limited: Significant backgrounds at present: neutron-tagging 3.5 Efficiency-corrected data 3.0 IN/dE_e [(22.5 kton year)⁻¹ MeV⁻¹] current 2.5 Largest allowed Capture of Expected total atmospheric **DSNB** signal neutrino background protons, signal 2.0 lost 1.5 1.0 Components of neutrino background 0.5 0 20 30 40 50 60 70 80 Visible energy E_ (MeV)

Beacom 2010, from SK limits (Malek et al 2003, for update see Bays et al 2012) R&D towards a signal-limited regime Use dissolved Gadolinium (Gd) for effective neutron-tagging Beacom & Vagins (2004)

 $\bar{\nu}_e + p \to e^+ + n$

with Gd

Capture on Gd, provides a coincidence signal

→ Opens an event limited search
 → Increases energy window

Spectrum	18 MeV threshold [/yr]	10 MeV threshold [/yr]
4 MeV	0.4 +/- 0.1	1.8+/- 0.5
4 MeV+BH	< 1.8	< 4.5
SN1987A	0.5 +/- 0.1	1.5 +/- 0.5

Horiuchi (Virginia Tech)

Summary

Take away messages:

- 1. Simulations are exploding! Systematic simulations are revealing that compactness is a useful parameter to characterize the diversity of corecollapse simulations.
- Observationally, the fraction of collapse to black holes may be as high as ~ 30% of core collapse. This would explain:
 - The red supergiant problem
 - The black hole mass function
 - The supernova rate discrepancy
 - Recent results from Survey about Nothing
- 3. Neutrinos provide a valuable test, both via the next Galactic supernova, and via the diffuse supernova neutrino background. (Survey About Nothing will provide important information also)

Thank you!

Horiuchi (Virginia Tech)