hadrons from (lattice) QCD

Jozef Dudek

calculational results from the hadron spectrum collaboration

lattice QCD

- first-principles numerical approach to the field-theory
 - evaluate correlation functions

 $\int \mathcal{D}\psi \,\mathcal{D}\bar{\psi} \,\mathcal{D}A_{\mu} \,f(\psi,\bar{\psi},A_{\mu}) \,e^{i\int d^{4}x \,\mathcal{L}(\psi,\bar{\psi},A_{\mu})}$

via Monte-Carlo sampling of path-integral on a finite cubic grid

» in principle recover physical QCD as

 $a \rightarrow 0 \quad L \rightarrow \infty$

» practical calculations often use

 $m_q^{\text{calc.}} > m_q^{\text{phys.}}$

Jefferson Lab

lattice QCD

- first-principles numerical approach to the field-theory
 - evaluate correlation functions

 $\int \mathcal{D}\psi \,\mathcal{D}\bar{\psi} \,\mathcal{D}A_{\mu} \,f(\psi,\bar{\psi},A_{\mu}) \,e^{i\int d^{4}x \,\mathcal{L}(\psi,\bar{\psi},A_{\mu})}$

via Monte-Carlo sampling of path-integral on a finite cubic grid

 - e.g. discrete spectrum from (euclidean) two-point correlation functions

$$\langle 0 | \mathcal{O}(t) \mathcal{O}(0) | 0 \rangle = \sum_{n} e^{-E_{n}t} | \langle 0 | \mathcal{O} | n \rangle |^{2}$$

- » in principle recover physical QCD as
 - $a \rightarrow 0 \quad L \rightarrow \infty$

 $m_q^{\text{calc.}} > m_q^{\text{phys.}}$

» practical calculations often use

exotic hybrid mesons in QCD ?

• an example of what we'd like to be able to do:

predict & understand hybrid mesons within QCD

exotic hybrid mesons in QCD ?

• an example of what we'd like to be able to do:

predict & understand hybrid mesons within QCD

• theoretical parallel of part of ongoing experimental programs

hybrid discovered in Marciana Marina

exotic hybrid mesons in QCD ?

• an example of what we'd like to be able to do:

predict & understand hybrid mesons within QCD

theoretical parallel of part of ongoing experimental programs

e.g. (tentative) signals for a 1^{-+} resonance above 1600 MeV

exotic hybrid mesons in QCD

• an example of what we'd like to be able to do:

understand hybrid mesons within QCD

exotic hybrid mesons in QCD

<u>(()</u>

OLD DOMINION UNIVERSITY

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

PRD83 111502 (2011) PRD88 094595 (2013)

excited resonances in QCD

Ε

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

Jefferson Lab

excited resonances in QCD

 but excited states are really resonances in the scattering of lighter hadrons

this **decay physics** should be captured in first-principles approaches to QCD

Jefferson Lab

can this be achieved within lattice QCD? (where the spectrum is **discrete**)

elastic scattering in quantum mechanics

• consider scattering of two identical bosons (in one space dimension)

outside the well

 $\psi(|z| > R) \sim \cos(p|z| + \delta(p))$

elastic scattering in quantum mechanics

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

Jefferson Lab

elastic scattering in quantum mechanics

'thinking inside the box'

• put the system in a **periodic box**

apply periodic boundary conditions

$$p = \frac{2\pi}{L}n - \frac{2}{L}\delta(p) \quad \begin{array}{l} \text{discrete} \\ \text{energy} \\ \text{spectrum} \end{array}$$

'thinking inside the box'

• put the system in a **periodic box**

apply periodic boundary conditions

ρ resonance in $\pi\pi$ scattering

1 MARCH 1973

PHYSICAL REVIEW D

VOLUME 7, NUMBER 5

 $\pi\pi$ Partial-Wave Analysis from Reactions $\pi^+ p \rightarrow \pi^+ \pi^- \Delta^{++}$ and $\pi^+ p \rightarrow K^+ K^- \Delta^{++}$ at 7.1 GeV/c⁺

S. D. Protopopescu, * M. Alston-Garnjost, A. Barbaro-Galtieri, S. M. Flatté, ‡ J. H. Friedman, § T. A. Lasinski, G. R. Lynch, M. S. Rabin, || and F. T. Solmitz Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (Received 25 September 1972)

PARTIAL WAVE AMPLITUDE

$$f_{\ell}(E) = \frac{1}{2i} \left(e^{2i \delta_{\ell}(E)} - 1 \right)$$

RESONANT PHASE SHIFT

ρ resonance in $\pi\pi$ scattering

• discrete spectrum in *L*×*L*×*L* lattice QCD boxes

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

 $m_{\pi} \sim 391 \,\mathrm{MeV}$

$\pi\pi P$ -wave phase-shift

• reducing the pion mass moves ρ mass, width in the right direction ...

coupled-channel resonances in QCD

but most excited resonances decay to more than one final state

coupled-channel resonances

Ε

coupled-channel resonances in QCD

but most excited resonances decay to more than one final state

coupled-channel resonances

have recently seen the first determinations of coupled-channel resonances in QCD ...

coupled-channel resonances in QCD

• first case calculated explicitly: $\pi K / \eta K$

PRL113 182001 (2014) PRD91 054008 (2015)

but these channels not strongly coupled ...

Jefferson Lab

$\pi \eta / K \overline{K}$ scattering and the a_0 (980)

• sharp experimental enhancement at $K\overline{K}$ threshold

usually observed in 'less-simple' production processes

• amplitude models typically give $\frac{g^2(K\overline{K})}{q^2(\pi n)} \sim 1$

 $\phi \rightarrow \gamma \pi \eta$

$\pi\eta/K\overline{K}$ scattering

• discrete spectrum in *L*×*L*×*L* boxes

 $m_{\pi} \sim 391 \,\mathrm{MeV}$

PRD93 094506 (2016)

$\pi \eta / K\overline{K}$ scattering in $J^P = 0^+$

$\pi\eta/K\overline{K}$ scattering in $J^P = 0^+$

$\pi \eta / K \overline{K}$ scattering in $J^P = 0^+$

Sheet	${ m Im}k_{\pi\eta}$	Imk _{KK}
	+	+
II	_	+
111	_	_
IV	+	_

a single pole on sheet $IV \Rightarrow a$ molecular interpretation ?

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

Jefferson Lab

$\pi\eta/K\overline{K}$ scattering in $J^P = 0^+$

hadron resonances from QCD | 5.11.2016 | GlueX

24

Jefferson Lab

many-body decays of resonances in QCD

this is the cutting edge of formalism ... Briceno, Hansen, Sharpe ...

resonances and currents

• what about production mechanisms ?

e.g. photoproduction in GlueX/CLAS12?

need tools to study coupling of resonances to 'external' currents ...

 π_1

resonances and currents : e.g. $\gamma \pi \rightarrow \pi \pi$

• first such calculation (of a simpler case) has recently appeared

Raul Briceno JLab Isgur Fellow

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

Jefferson Lab

where do we stand ?

(**()**)

OLD DOMINION UNIVERSITY

rapid progress since 2009 'single-hadron' excited spectra incl. isoscalars, charmonium, baryons phenomenology of hybrids elastic scattering amplitudes $\pi\pi$ non-resonant (isospin=2) *P*-wave ρ quark mass dependence coupled-channel scattering amplitudes $\pi K/\eta K$ and K^* resonances $\pi\eta/K\overline{K}$ and a_0 resonance resonances coupled to currents $\pi\pi$ production in $\gamma^*\pi$

 $\rho \rightarrow \pi \gamma$ form-factor

• moving in the right direction to study higher resonances

in particular, hybrid mesons ...

(also baryons, XYZ states ...)

JEFFERSON LAB

Jozef Dudek **Robert Edwards Balint Joo David Richards** Raul Briceno

TRINITY, DUBLIN

Michael Peardon Sinead Ryan

CAMBRIDGE

Christopher Thomas Graham Moir David Wilson

MESON SPECTRUM

PRL103 262001 (2009)	I = 1
PRD82 034508 (2010)	$I = 1, K^{\star}$
PRD83 111502 (2011)	I = 0
JHEP07 126 (2011)	CĒ
PRD88 094505 (2013)	I = 0
JHEP05 021 (2013)	D, D_s

HADRON SCATTERING

PRD83 071504 (2011)	$\pi\pi I = 2$
PRD86 034031 (2012)	$\pi\pi I = 2$
PRD87 034505 (2013)	$\pi\pi I = 1, \rho$
PRL113 182001 (2014)	$\pi K, \eta K : K^{\star}$
PRD91 054008 (2015)	$\pi K, \eta K : K^{\star}$
PRD92 094502 (2015)	$\pi\pi, K\bar{K}: \rho$
PRD93 094506 (2016)	$\pi\eta, K\bar{K}:a_0$

BARYON SPECTRUM

PRD84 074508 (2011) PRD85 054016 (2012) PRD87 054506 (2013) PRD90 074504 (2014) PRD91 094502 (2015)

 $(N, \Delta)^{\star}$ $(N, \Delta)_{\rm hvb}$ $(N \dots \Xi)^{\star}$ $\begin{array}{c} \Omega_{ccc}^{\star} \\ \Xi_{cc}^{\star} \end{array}$

MATRIX ELEMENTS

PRD90 014511 (2014) $t_{\pi^{\star}}$ **PRD91 114501 (2015)** $M' \to \gamma M$ **PRL115 242001 (2015)** $\gamma^* \pi \to \pi \pi$ **PRD93 114508 (2016)** $\gamma^*\pi \to \pi\pi$

LATTICE TECH.

PRD79 034502 (2009) PRD80 054506 (2009) PRD85 014507 (2012)

lattices distillation $\vec{p} > 0$

Jefferson Lab

coupled-channel in a finite-volume

• the discrete spectrum is again related to scattering amplitudes:

$$\det \begin{bmatrix} \mathbf{t}^{-1}(E) + i\boldsymbol{\rho}(E) - \mathbf{M}(E,L) \end{bmatrix} = 0$$
scattering
matrix
space
known
functions

HE, JHEP 0507 011 HANSEN, PRD86 016007 BRICENO, PRD88 094507 GUO, PRD88 014051

- spectrum given by the values of *E* which solve this equation
- we compute the spectrum in lattice QCD to determine $\mathbf{t}(E)$

multiple unknowns for each energy level - can't solve !

parameterize the energy dependence & describe the 'entire' spectrum

(

hadron resonances from QCD | 5.11.2016 | GlueX

parameterizing t(E)

must be a **unitarity-preserving** parameterization

$$\det\left[\mathbf{t}^{-1}(E) + i\boldsymbol{\rho}(E) - \mathbf{M}(E,L)\right] = 0$$

 $det \left[\operatorname{Re}(\mathbf{t}^{-1}) + i \operatorname{Im}(\mathbf{t}^{-1}) + i\rho - \mathbf{M} \right] = 0$

hadron resonances from QCD | 5.11.2016 | GlueX

must be a unitarity-preserving parameterization

$$\det \left[\mathbf{t}^{-1}(E) + i\boldsymbol{\rho}(E) - \mathbf{M}(E,L) \right] = 0$$
$$\det \left[\operatorname{Re}(\mathbf{t}^{-1}) + i\operatorname{Im}(\mathbf{t}^{-1}) + i\boldsymbol{\rho} - \mathbf{M} \right] = 0$$

real above threshold

<u>رف</u> OLD DOMINION

must be a **unitarity-preserving** parameterization

$$\det \left[\mathbf{t}^{-1}(E) + i\boldsymbol{\rho}(E) - \mathbf{M}(E,L) \right] = 0$$
$$\det \left[\operatorname{Re}(\mathbf{t}^{-1}) + i\operatorname{Im}(\mathbf{t}^{-1}) + i\boldsymbol{\rho} - \mathbf{M} \right] = 0$$

must vanish to have solutions

real above threshold

OLD DOMINION hadron resonances fro

<u>(()</u>)

must be a **unitarity-preserving** parameterization

$$\det \left[\mathbf{t}^{-1}(E) + i\rho(E) - \mathbf{M}(E,L) \right] = 0$$
$$\det \left[\operatorname{Re}(\mathbf{t}^{-1}) + i\operatorname{Im}(\mathbf{t}^{-1}) + i\rho - \mathbf{M} \right] = 0$$

must vanish to have solutions

real above threshold

e.g. K-matrix form

$$\mathbf{t}^{-1}(E) = \mathbf{K}^{-1}(E) + \mathbf{I}(E)$$

must be a **unitarity-preserving** parameterization

$$\det \left[\mathbf{t}^{-1}(E) + i\rho(E) - \mathbf{M}(E,L) \right] = 0$$
$$\det \left[\operatorname{Re}(\mathbf{t}^{-1}) + i\operatorname{Im}(\mathbf{t}^{-1}) + i\rho - \mathbf{M} \right] = 0$$

must vanish to have solutions

real above threshold

must be a unitarity-preserving parameterization

$$\det \left[\mathbf{t}^{-1}(E) + i\rho(E) - \mathbf{M}(E,L) \right] = 0$$
$$\det \left[\operatorname{Re}(\mathbf{t}^{-1}) + i\operatorname{Im}(\mathbf{t}^{-1}) + i\rho - \mathbf{M} \right] = 0$$

must vanish to have solutions

real above threshold

e.g. *K*-matrix form $\mathbf{t}^{-1}(E) = \underbrace{\mathbf{K}^{-1}(E)}_{real \ function} + \underbrace{\mathbf{I}(E)}_{Im \ I_{ij}}(E) = -\delta_{ij} \rho_i(E) \quad \text{e.g. Chew-Mandelstam form}$

πK/ηK coupled-channel scattering

UNIVERSITY

πK/ηK coupled-channel scattering

UNIVERSITY

• as we increase the coupling to the decay channel

• as we increase the coupling to the decay channel

very weak coupling of **R** to $\pi\pi$

avoided level crossings ...

finite-volume eigenstates are admixtures of R and $\pi\pi$

(İ)

DDOMINION UNIVERSITY

to accurately resolve the complete spectrum, need to include meson-meson-like operators

e.g.
$$\sum_{\hat{p}} \bar{\psi} \Gamma_{\pi} \psi(\vec{p}) \ \bar{\psi} \Gamma_{\pi} \psi(-\vec{p})$$

in order to overlap with the $\pi\pi$ component

so what is that spectrum ?

(())

OLD DOMINION UNIVERSITY to accurately resolve the complete spectrum, need to include meson-meson-like operators

 $\sum_{\hat{p}} \bar{\psi} \Gamma_{\pi} \psi(\vec{p}) \; \bar{\psi} \Gamma_{\pi} \psi(-\vec{p})$

in order to overlap with the $\pi\pi$ component

$\pi\eta/K\overline{K}$ scattering in $J^P = 0^+$

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

Jefferson Lab

$\pi\eta/K\overline{K}$ scattering in $J^P = 0^+$

• Argand plots

<u>(()</u>)

OLD DOMINION UNIVERSITY

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

 $m_{\pi} \sim 391 \,\mathrm{MeV}$

$\pi\eta/K\overline{K}$ scattering in $J^P = 0^+$

$\pi\eta/K\overline{K}$ scattering in $J^P = 2^+$

OLD DOMINION

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

40

Jefferson Lab

distillation

efficiently evaluate a large number of correlation functions compute quark annihilation where needed

large basis of hadron operators

began with meson operator basis $\, \bar{\psi} \Gamma \overleftrightarrow{D} \ldots \overleftrightarrow{D} \psi$

'subduced' into the irreps of the cubic symmetry

found a workaround for the breakdown of rotational symmetry

(up to three derivatives)

variational solution

'diagonalize' a matrix of correlation functions

extract many excited states

s
$$C_{ij}(t) = \langle 0 | \mathcal{O}_i(t) \, \mathcal{O}_j^{\dagger}(0) | 0 \rangle$$

 $C(t)v^{\mathfrak{n}} = \lambda^{\mathfrak{n}}(t) \, C(t_0)v^{\mathfrak{n}}$

excited isovector meson spectrum

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

42

Jefferson Lab

excited isovector meson spectrum

<u>(()</u>

OLD DOMINION UNIVERSITY

• spectrum does not change qualitatively

Jefferson Lab

isovector hybrid mesons

• 'super'-multiplet of hybrid mesons roughly 1.3 GeV above the ho

utilized overlaps with characteristic operators to identify state make-up

• these states have a dominant overlap onto $\ ar{\psi}\Gamma[D,D]\psi\ \sim [qar{q}]_{m{8}_c}\otimes B_{m{8}_c}$

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

 $(0,1,2)^{-+},1$

Jefferson Lab

exotic hybrid quark mass dependence

isoscalar meson spectrum

UNIVERSITY

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

46

isoscalar meson spectrum

rest of the lattice community still struggling with η, η' alone

Jefferson Lab

<u>(()</u>)

charmonium

(())

OLD DOMINION UNIVERSITY

this work lead by our Dublin collaborators

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

48

chromo-magnetic gluonic excitation

• lightest set of hybrid mesons appear to contain a 1^{+-} gluonic excitation

quarks in
an S-wave
$$\begin{bmatrix} q\bar{q}_{\mathbf{8}_{\mathbf{c}}} \begin{bmatrix} {}^{1}\!S_{0} \end{bmatrix} G_{\mathbf{8}_{\mathbf{c}}}^{\star} \begin{bmatrix} B \end{bmatrix} \end{bmatrix}_{\mathbf{1}_{\mathbf{c}}} \to 1_{\text{hyb.}}^{--} \\ \begin{bmatrix} q\bar{q}_{\mathbf{8}_{\mathbf{c}}} \begin{bmatrix} {}^{3}\!S_{1} \end{bmatrix} G_{\mathbf{8}_{\mathbf{c}}}^{\star} \begin{bmatrix} B \end{bmatrix} \end{bmatrix}_{\mathbf{1}_{\mathbf{c}}} \to (0, 1, 2)_{\text{hyb.}}^{-+}$$

- some models have similar systematics
 - bag model also has 1⁺⁻ lowest in energy
 - 1⁺⁻ in a Coulomb-gauge approach

49

chromo-magnetic gluonic excitation

• lightest set of hybrid mesons appear to contain a 1^{+-} gluonic excitation

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \left[q\bar{q}_{8_{c}} \left[^{1}S_{0} \right] G_{8_{c}}^{\star} \left[B \right] \right]_{1_{c}} \rightarrow 1_{hyb.}^{--} \\ \left[q\bar{q}_{8_{c}} \left[^{3}S_{1} \right] G_{8_{c}}^{\star} \left[B \right] \right]_{1_{c}} \rightarrow (0,1,2)_{hyb.}^{-+} \\ \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \left[q\bar{q}_{8_{c}} \left[^{1}P_{1} \right] G_{8_{c}}^{\star} \left[B \right] \right]_{1_{c}} \rightarrow (0,1,2)_{hyb.}^{++} \\ \end{array} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \left[q\bar{q}_{8_{c}} \left[^{1}P_{1} \right] G_{8_{c}}^{\star} \left[B \right] \right]_{1_{c}} \rightarrow (0,1,2)_{hyb.}^{++} \\ \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \left[q\bar{q}_{8_{c}} \left[^{1}P_{1} \right] G_{8_{c}}^{\star} \left[B \right] \right]_{1_{c}} \rightarrow (0,1,2)_{hyb.}^{++} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \left[q\bar{q}_{8_{c}} \left[^{1}P_{1} \right] G_{8_{c}}^{\star} \left[B \right] \right]_{1_{c}} \rightarrow (0,1^{3},2^{2},3)_{hyb.}^{+-} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array}$$

- some models have similar systematics
 - bag model also has 1^{+-} lowest in energy
 - 1^{+-} in a Coulomb-gauge approach

excited baryons

• a 'super'-multiplet of hybrid baryons

spectrum from large basis of baryon operators

(İ)

OLD DOMINION UNIVERSITY

$$\epsilon_{abc} \left(D^{n_1} \frac{1}{2} (1 \pm \gamma_0) \psi \right)^a \left(D^{n_2} \frac{1}{2} (1 \pm \gamma_0) \psi \right)^b \left(D^{n_3} \frac{1}{2} (1 \pm \gamma_0) \psi \right)^c$$

PRD84 074508 (2011) PRD85 054016 (2012)

chromo-magnetic excitation

lowest gluonic excitation in QCD now determined ?

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

Jefferson Lab

3+1 dim field theory in a cubic volume

Lüscher:

$$\cot \delta_{\ell}(E) = \mathcal{M}_{\ell}(E,L)$$

[modulo some subtleties regarding *l*-mixing]

what operator basis is required ?

supplement large $\bar{\psi}\Gamma\overleftrightarrow{D}\ldots\overleftrightarrow{D}\psi$ basis with meson-meson-like operators

e.g.
$$\mathcal{O}_{\pi\pi}^{|\vec{p}|} = \sum_{\hat{p}} C(\hat{p}) \mathcal{O}_{\pi}(\vec{p}) \mathcal{O}_{\pi}(-\vec{p})$$
 where $\mathcal{O}_{\pi}(\vec{p}) = \sum_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \bar{\psi} \Gamma \psi(\vec{x})$

now need to evaluate diagrams like

distillation can handle the annihilation lines

$\pi\pi P$ -wave phase-shift

coupled-channel meson-meson scattering

• more challenging analysis problem

e.g. in a **two-channel** process, **three** unknowns specify the S-matrix at each energy

our solution: parameterize the energy dependence of the S-matrix and describe the finite-volume spectra by varying parameters

coupled-channel meson-meson scattering

• more challenging analysis problem

e.g. in a **two-channel** process, **three** unknowns specify the S-matrix at each energy

our solution: parameterize the energy dependence of the S-matrix and describe the finite-volume spectra by varying parameters

- first attempt, coupled-channel $\pi K/\eta K$ scattering
- need to compute the finite-volume spectra ... lots of Wick contractions ...

$\pi K/\eta K$ lattice QCD spectra

56

OLD DOMINION UNIVERSITY

$\pi K/\eta K$ lattice QCD spectra

56

$\pi K/\eta K$ lattice QCD spectra

$\pi K/\eta K$ coupled-channel scattering

• describe all the finite-volume spectra

$$\chi^2 / N_{\rm dof} = \frac{49.1}{61 - 6} = 0.89$$

OLD DOMINION UNIVERSITY

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

58

 $m_{\pi} \sim 391 \,\mathrm{MeV}$

versus experimental scattering

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

• S-matrix poles as least model-dependent characterization of resonances

PRL 113 182001 PRD 91 054008

• S-matrix poles as least model-dependent characterization of resonances

(())

OLD DOMINION UNIVERSITY

• S-matrix poles as least model-dependent characterization of resonances

()) OLD DOMINION

• S-matrix poles as least model-dependent characterization of resonances

... but no strong channel-coupling here ...

Jefferson Lab

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

(İ)

OLD DOMINION UNIVERSITY

pole singularities in two-channels

• unitarity implies four Riemann sheets in this case

'BW-like' resonance below KK threshold

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

65

'BW-like' resonance above KK threshold

'Flatté form'

$$t_{ij}(s) = \frac{g_i g_j}{m^2 - s - ig_1^2 \rho_1(s) - ig_2^2 \rho_2(s)}$$

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

"a bump in each channel"

fits to experimental data tend to exhibit this structure

(D) OLD DOMINION

single-pole resonance on sheet IV

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

resonance sheet distribution

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

amplitude from lattice spectrum

this fit from a *K*-matrix parameterization

$$t_{ij}^{-1}(E) = K_{ij}^{-1}(E) + \delta_{ij} I_i(E)$$
$$K_{ij}(E) = \frac{g_i g_j}{m^2 - E^2} + \gamma_{ij}$$

OLD DOMINION UNIVERSITY

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

 $m_{\pi} \sim 391 \,\mathrm{MeV}$ **70**

singularity structure

UNIVERSITY

bit esoteric isn't it ... ?

pole distributions and molecular states ?

Pole counting and resonance classification

D. Morgan Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK

Received 14 January 1992

'confined' state coupled to decay continuum \rightarrow Breit-Wigner like (two poles)

molecular state from long-range potential \rightarrow one pole

pole distributions and molecular states ?

Pole counting and resonance classification

D. Morgan Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK

Received 14 January 1992

'confined' state coupled to decay continuum \rightarrow Breit-Wigner like (two poles)

molecular state from long-range potential \rightarrow one pole

other molecule diagnostics ?

couple to an external current e.g. $\phi \rightarrow \gamma(\pi\eta, K\overline{K})$ or $(\pi\eta, K\overline{K}) \rightarrow \gamma(\pi\eta, K\overline{K})$ or other currents ...

and extract form-factors from the residue of the pole

pole distributions and molecular states ?

Pole counting and resonance classification

D. Morgan Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK

Received 14 January 1992

'confined' state coupled to decay continuum \rightarrow Breit-Wigner like (two poles)

molecular state from long-range potential \rightarrow one pole

other molecule diagnostics ?

```
couple to an external current e.g. \phi \rightarrow \gamma(\pi \eta, K\overline{K})
or (\pi \eta, K\overline{K}) \rightarrow \gamma(\pi \eta, K\overline{K}) or other currents ...
```

and extract form-factors from the residue of the pole

```
examples of the
interesting convergence of
lattice QCD,
S-matrix ideas,
and phenomenology
```

Jefferson Lab

timeline

<u>(İ)</u>

OLD DOMINION UNIVERSITY

2009	dynamical anisotropic lattices, distillation
2010	highly excited isovector meson spectrum
2011	highly excited isoscalar meson spectrum highly excited baryon spectrum phenomenology of hybrid mesons
2012	hybrid baryon spectrum $\pi\pi$ scattering, isospin=2 highly excited charmonium spectrum
2013	$\pi\pi$ scattering, isospin=1, ρ resonance coupled-channel formalism
2014	coupled-channel πK , ηK scattering
2015	excited meson radiative transitions $\gamma\pi \rightarrow \pi\pi$ and the $\rho \rightarrow \pi\gamma$ transition
2016	coupled-channel $\pi\eta, K\overline{K}$ scattering

ρ pole with m_{π} =236 MeV

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

74

coupled-channel case

- most resonances decay to more than one final state or lie near thresholds
 - study the **coupled-channel S-matrix**

$$\mathbf{S} = \mathbf{1} + 2i\sqrt{\rho} \mathbf{t}\sqrt{\rho}$$

• find poles [mass, width] & residues [couplings]

$$t_{ij}(s) \sim \frac{g_i g_j}{s_R - s}$$

2×2 S-MATRIX
$S_{11} = \eta e^{2i\delta_1}$
$S_{22} = \eta e^{2i\delta_2}$
$S_{12} = i\sqrt{1-\eta^2} e^{i(\delta_1+\delta_2)}$

coupled-channel in a finite-volume

• the discrete spectrum is again related to scattering amplitudes:

$$\det \begin{bmatrix} \mathbf{t}^{-1}(E) + i\boldsymbol{\rho}(E) - \mathbf{M}(E,L) \end{bmatrix} = 0$$

$$\int_{\substack{\text{scattering} \\ \text{matrix}}} \sum_{\substack{\text{space} \\ \text{space}}} \int_{\substack{\text{known} \\ \text{functions}}} \sum_{\substack{\text{known} \\ \text{functions}}} \int_{\substack{\text{space} \\ \text{functions}}} \sum_{\substack{\text{space} \\ \text{functions}}} \int_{\substack{\text{space} \\ \text{space}}} \sum_{\substack{\text{space} \\ \text{functions}}} \int_{\substack{\text{space} \\ \text{space}}} \sum_{\substack{\text{space} \\ \text{space} \\ \text{space}}} \int_{\substack{\text{space} \\ \text{space} \\ \text$$

HE, JHEP 0507 011 HANSEN, PRD86 016007 BRICENO, PRD88 094507 GUO, PRD88 014051

- spectrum given by the values of *E* which solve this equation
- we compute the spectrum in lattice QCD to determine $\mathbf{t}(E)$

multiple unknowns for each energy level - can't solve !

parameterize the energy dependence & describe the 'entire' spectrum

$\pi K/\eta K$ coupled-channel scattering

• parameterize the *t*-matrix in a unitarity conserving way

$$\pi K = \pi K \quad \pi K = \eta K$$
one example (from many)
$$\eta K = \pi K \quad \eta K = \pi K \quad t_{ij}^{-1}(E) = K_{ij}^{-1}(E) + \delta_{ij} I_i(K)$$

$$K_{ij}(E) = \frac{g_i g_j}{m^2 - E^2} + \gamma_{ij}$$

- vary the parameters, solving

$$\det\left[\mathbf{t}^{-1}(E) + i\boldsymbol{\rho}(E) - \mathbf{M}(E,L)\right] = 0$$

for the spectrum each time

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

E

πK/ηK coupled-channel scattering

• clear narrow resonance in D-wave scattering

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

(())

OLD DOMINION UNIVERSITY

OLD DOMINION UNIVERSITY

• seem to need large effects in S-wave and much less in higher waves

$\pi K/\eta K$ coupled-channel scattering

- are the result parameterization dependent ?
 - try a range of parameterizations ...

S-WAVE $\pi K/\eta K$ SCATTERING

- gross features are robust

Jefferson Lab

$\pi K/\eta K$ coupled-channel scattering

- are the result parameterization dependent ?
 - try a range of parameterizations ...

 $(\dot{\mathbf{I}})$

OLD DOMINION UNIVERSITY

- gross features are robust

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

 $m_{\pi} \sim 391 \,\mathrm{MeV}$ 81

πK/ηK parameterization

Jefferson Lab

P-wave scattering

every irrep containing a subduction of the P-wave has a level very near the πK threshold

even when there isn't a non-interacting level nearby

P-wave scattering

every irrep containing a subduction of the *P*-wave has a level very near the πK threshold

even when there isn't a non-interacting level nearby

DOMINION UNIVERSITY

P-wave scattering

every irrep containing a subduction of the *P*-wave has a level very near the πK threshold

even when there isn't a non-interacting level nearby

(Č))

D DOMINION UNIVERSITY

use a Breit-Wigner with a subthreshold mass

P-WAVE $\pi K/\eta K$ SCATTERING 30 20 10 $\delta_1^{\eta K}$ 0 $\delta_1^{\pi K}$ -10 $-a_t E_{cm}$ 0.18 0.16 0.20 0.22 0.24 24 20 16 0.16 0.18 0.20 0.22 0.24 1.0 0.9 0.8 0.7

use a Breit-Wigner with a subthreshold mass

'single-hadron' spectrum

just using $q\overline{q}$ operators ?

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

Jefferson Lab

must be a unitarity-preserving parameterization

$$\det\left[\mathbf{t}^{-1}(E) + i\boldsymbol{\rho}(E) - \mathbf{M}(E,L)\right] = 0$$

 $det \left[\operatorname{Re}(\mathbf{t}^{-1}) + i \operatorname{Im}(\mathbf{t}^{-1}) + i\rho - \mathbf{M} \right] = 0$

must be a unitarity-preserving parameterization

$$\det \left[\mathbf{t}^{-1}(E) + i\boldsymbol{\rho}(E) - \mathbf{M}(E,L) \right] = 0$$
$$\det \left[\operatorname{Re}(\mathbf{t}^{-1}) + i\operatorname{Im}(\mathbf{t}^{-1}) + i\boldsymbol{\rho} - \mathbf{M} \right] = 0$$

real above threshold

must be a unitarity-preserving parameterization

$$\det \left[\mathbf{t}^{-1}(E) + i\boldsymbol{\rho}(E) - \mathbf{M}(E,L) \right] = 0$$
$$\det \left[\operatorname{Re}(\mathbf{t}^{-1}) + i\operatorname{Im}(\mathbf{t}^{-1}) + i\boldsymbol{\rho} - \mathbf{M} \right] = 0$$

must vanish to have solutions

real above threshold

must be a unitarity-preserving parameterization

$$\det \left[\mathbf{t}^{-1}(E) + i\rho(E) - \mathbf{M}(E,L) \right] = 0$$
$$\det \left[\operatorname{Re}(\mathbf{t}^{-1}) + i\operatorname{Im}(\mathbf{t}^{-1}) + i\rho - \mathbf{M} \right] = 0$$

must vanish to have solutions real above threshold

S-matrix constraints are entering the game ...

must be a unitarity-preserving parameterization

$$\det \left[\mathbf{t}^{-1}(E) + i\rho(E) - \mathbf{M}(E,L) \right] = 0$$
$$\det \left[\operatorname{Re}(\mathbf{t}^{-1}) + i\operatorname{Im}(\mathbf{t}^{-1}) + i\rho - \mathbf{M} \right] = 0$$

must vanish to have solutions real above threshold

S-matrix constraints are entering the game ...

e.g. K-matrix form

$$\mathbf{t}^{-1}(E) = \mathbf{K}^{-1}(E) + \mathbf{I}(E)$$

must be a unitarity-preserving parameterization

$$\det \left[\mathbf{t}^{-1}(E) + i\rho(E) - \mathbf{M}(E,L) \right] = 0$$
$$\det \left[\operatorname{Re}(\mathbf{t}^{-1}) + i\operatorname{Im}(\mathbf{t}^{-1}) + i\rho - \mathbf{M} \right] = 0$$

must vanish to have solutions real above threshold

S-matrix constraints are entering the game ...

e.g. *K*-matrix form $\mathbf{t}^{-1}(E) = \mathbf{K}^{-1}(E) + \mathbf{I}(E)$

must be a unitarity-preserving parameterization

$$\det \left[\mathbf{t}^{-1}(E) + i\rho(E) - \mathbf{M}(E,L) \right] = 0$$
$$\det \left[\operatorname{Re}(\mathbf{t}^{-1}) + i\operatorname{Im}(\mathbf{t}^{-1}) + i\rho - \mathbf{M} \right] = 0$$

must vanish to have solutions real above threshold

S-matrix constraints are entering the game ...

e.g. *K*-matrix form

$$\mathbf{t}^{-1}(E) = \mathbf{K}^{-1}(E) + \mathbf{I}(E)$$
real function

$$\operatorname{Im} I_{ij}(E) = -\delta_{ij} \rho_i(E) \quad \text{e.g. Chew-Mandelstam form shown by lan}$$

must be a unitarity-preserving parameterization

$$\det \left[\mathbf{t}^{-1}(E) + i\rho(E) - \mathbf{M}(E,L) \right] = 0$$
$$\det \left[\operatorname{Re}(\mathbf{t}^{-1}) + i\operatorname{Im}(\mathbf{t}^{-1}) + i\rho - \mathbf{M} \right] = 0$$

must vanish to have solutions real above threshold

S-matrix constraints are entering the game ...

e.g. *K*-matrix form $\mathbf{t}^{-1}(E) = \underbrace{\mathbf{K}^{-1}(E)}_{real \ function} + \underbrace{\mathbf{I}(E)}_{Im \ I_{ij}}(E) = -\delta_{ij} \rho_i(E) \xrightarrow{\text{e.g. Chew-Mandelstam form shown by lan}}$

e.g. 6 parameter "pole plus constant" form

$$K_{ij}(E) = \frac{g_i g_j}{m^2 - E^2} + \gamma_{ij}$$

with variables

m, *g*₁, *g*₂, *y*₁₁, *y*₁₂, *y*₂₂

[100] *A*₁ spectrum

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

89

Jefferson Lab

PRD84 074023 (2011)

90

• simple (model-dependent) reading of a subset of 1-- operators

$$- \ \bar{\psi}\vec{\gamma}\psi \longrightarrow q\bar{q} \left| {}^{3}S_{1} \right|$$

• simple (model-dependent) reading of a subset of 1⁻⁻ operators

$$- \bar{\psi}\vec{\gamma}\psi \longrightarrow q\bar{q} |{}^3S_1|$$

two derivative construction:

$$[J=1] \otimes [J=1] \rightarrow [J=0,1,2]$$

 $D_{Jm}^{[2]} = \langle 1m_1; 1m_2 | Jm \rangle \left(\vec{\epsilon}_{m_1} \cdot \overleftarrow{D} \right) \left(\vec{\epsilon}_{m_2} \cdot \overleftarrow{D} \right)$

gauge-covariant derivative $D_\mu = \partial_\mu + ig A_\mu$

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

• simple (model-dependent) reading of a subset of 1⁻⁻ operators

 $- \ \bar{\psi}\vec{\gamma}\psi \longrightarrow q\bar{q} \left[{}^{3}S_{1}\right]$

two derivative construction: $[J = 1] \otimes [J = 1] \rightarrow [J = 0, 1, 2]$ $D_{Im}^{[2]} = \langle 1m_1; 1m_2 | Jm \rangle (\vec{\epsilon}_{m_1} \cdot \overrightarrow{D}) (\vec{\epsilon}_{m_2} \cdot \overrightarrow{D})$

gauge-covariant derivative $D_\mu = \partial_\mu + ig A_\mu$

 $-\left[\bar{\psi}\,\vec{\gamma} \otimes D_{J=2}^{[2]}\,\psi\right]_{J=1}$

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

• simple (model-dependent) reading of a subset of 1⁻⁻ operators

 $- \ \bar{\psi}\vec{\gamma}\psi \longrightarrow q\bar{q} \left[{}^{3}S_{1} \right]$

two derivative construction: $[J = 1] \otimes [J = 1] \rightarrow [J = 0, 1, 2]$ $D_{Im}^{[2]} = \langle 1m_1; 1m_2 | Jm \rangle (\vec{\epsilon}_{m_1} \cdot \overrightarrow{D}) (\vec{\epsilon}_{m_2} \cdot \overrightarrow{D})$

gauge-covariant derivative $D_\mu = \partial_\mu + ig A_\mu$

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

• simple (model-dependent) reading of a subset of 1⁻⁻ operators

 $- \ \bar{\psi}\vec{\gamma}\psi \longrightarrow q\bar{q} \left[{}^{3}S_{1} \right]$

two derivative construction: $\begin{bmatrix} J = 1 \end{bmatrix} \otimes \begin{bmatrix} J = 1 \end{bmatrix} \rightarrow \begin{bmatrix} J = 0, 1, 2 \end{bmatrix}$ $D_{Jm}^{[2]} = \langle 1m_1; 1m_2 | Jm \rangle (\vec{\epsilon}_{m_1} \cdot \overrightarrow{D}) (\vec{\epsilon}_{m_2} \cdot \overrightarrow{D})$

gauge-covariant derivative $D_\mu = \partial_\mu + ig A_\mu$

-
$$\bar{\psi} \gamma_5 D_{J=1}^{[2]} \psi$$

hadrons from LQCD | 6.28.2016 | lepton-nucleus scat. XIV

• simple (model-dependent) reading of a subset of 1⁻⁻ operators

 $- \ \bar{\psi}\vec{\gamma}\psi \longrightarrow q\bar{q} \ |{}^{3}S_{1}|$

UNIVERSITY

two derivative construction: $[I=1] \otimes [I=1] \rightarrow [I=0,1,2]$ $D_{Im}^{[2]} = \langle 1m_1; 1m_2 | Jm \rangle \left(\vec{\epsilon}_{m_1} \cdot \overleftrightarrow{D} \right) \left(\vec{\epsilon}_{m_2} \cdot \overleftrightarrow{D} \right)$

gauge-covariant derivative $D_{\mu} = \partial_{\mu} + igA_{\mu}$

PRD84 074023 (2011)

90

• appears to be some $q\overline{q}$ -like near-degeneracy patterns

• appears to be some $q\overline{q}$ -like near-degeneracy patterns

• appears to be some $q\overline{q}$ -like near-degeneracy patterns

• appears to be some $q\overline{q}$ -like near-degeneracy patterns

• appears to be some $q\overline{q}$ -like near-degeneracy patterns

• appears to be some $q\overline{q}$ -like near-degeneracy patterns

1⁻⁻ operator overlaps

1⁻⁻ operator overlaps

tetraquarks ? qqqqq

- need not be near a threshold
- multiplicity of possibilities has always been the challenge:

 $\mathbf{3}_F \otimes \mathbf{3}_F \otimes \mathbf{\overline{3}}_F \otimes \mathbf{\overline{3}}_F = \mathbf{1}_F \oplus \mathbf{8}_F \oplus \mathbf{8}_F \oplus \mathbf{10}_F \oplus \mathbf{\overline{10}}_F \oplus \mathbf{27}_F$ contain exotic flavor states

• absence of exotic flavor resonant behavior :

Z_c⁺ ?

- large basis of meson-meson operators
- plus diquark-antidiquark tetraquark constructions

Jefferson Lab

Chew-Mandlestam

 $[t^{-1}(s)]_{ij} = [K^{-1}(s)]_{ij} + \delta_{ij} I_i(s)$ 95

• equal mass case

$$\begin{split} I(s) &= -C(s) \\ C(s) &= C(0) + \frac{s}{\pi} \int_{s_{\text{th}}}^{\infty} ds' \sqrt{1 - \frac{s_{\text{th}}}{s'}} \frac{1}{s'(s'-s)} \\ C(s) &= \frac{\rho(s)}{\pi} \log \left[\frac{\rho(s) - 1}{\rho(s) + 1} \right] \quad \text{subtracting at threshold}} \quad C(s_{\text{th}}) = 0 \end{split}$$

• unequal mass case

