ELBA XIV LEPTON-NUCLEUS SCATTERING30 June 2016

Hypernucler experimental program

Satoshi N. Nakamura Tohoku University

30 June 2016 Marciana Marina, Isola d'Elba At Spiaggia La FENICIA 28 June 2016

Quantum Many-body System Bound by the Strong Int.

(Hyper)

10^{-15} m

 10^{4} m

Neutron Star

Spectroscopy of Hypernuclei

NN scat.

Baryon Interaction

Obs. NS 2 M Hyperon Puzzle

History of Hypernuclear Study (experiment)

1953 discovery of hypernucleus (emulsion with cosmic-ray, by Danysz and Pniewski)

1970s CERN, BNL Counter experiments with Kaon beam

1980sBNL-AGS, KEK-PSCounter experimentswith K/π beam1998- γ -spectroscopy with HyperballFIN

FINUDA at DAΦNE

 $\Phi \rightarrow K^+ K^-$ (49%)

2000~ (e,e'K⁺) spectroscopy @ JLab

 $Z(e, e'K^{+})_{\Lambda}(Z-1)$ reaction

HI-Beams @ GSI, RHIC, LHC

Meson beam experiments at J-PARC

Decay π @ Mainz

Present Status of Λ Hypernuclear Spectroscopy

Updated from: O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.

(e,e'K⁺) vs. others

γ-ray spectroscopy

decay π

Super high resolution (a few keV) But **ONLY level spacing** measurable

Excellent mass resolution (~0.1 MeV) But **ONLY mass of ground state of light HY**

(e,e'K⁺) vs. others

 (e,e'K⁺)
 Excellent mass resolution (~ 0.5 MeV)
 Absolute energy calibration p(e,e'K⁺) Λ, Σ⁰

So far performed only at JLab

 $E_e > 1.5$ GeV high quality e beam $\Delta p/p \sim 10^{-4}$, >1GeV/c spectrometers

Techniques for Hypernuclear Spectroscopy

Method	Resolution	Absolute E	Yield	comments
(e,e'K+)	0.5 MeV	Ø	\times 100nb/sr	$p ightarrow \Lambda$
(π ⁺ ,K ⁺)	1.5 - 2 MeV	\bigcirc (norm ${}^{12}_{\Lambda}$ C)	O 10μb/sr	$n ightarrow \Lambda$
(Κ ⁻ , π ⁻)	~2 MeV	O (norm ${}^{12}_{\Lambda}C$)	© 10mb/sr	$n ightarrow \Lambda$
γ-ray	0.003 MeV	×	-	-
Decay π	0.1 MeV	◎ (only g.s.) w/elastic sc.	-	Fragments

All techniques are complementary.

Hypernuclear experiments at JLab

E89-009 (2000) : Existing spectrometers, SOS + Enge Proof of Principle

E01-011 (2005) : Construction of HKS, Tilt Method Λ , Σ^0 , $^7_{\Lambda}$ He, $^{12}_{\Lambda}$ B, $^{28}_{\Lambda}$ Al Light Hypernuclei

E94-107 (2004-5) Two HRSs + SC Septum $\Lambda, \Sigma^{0}, {}^{9}_{\Lambda}Li, {}^{12}_{\Lambda}B, {}^{16}_{\Lambda}N$ Light Hypernuclei

E05-115 (2009) : HKS+HES, new Chicane beamline, Splitter Λ , Σ^0 , $^7_\Lambda$ He , $^{12}_\Lambda$ B, $^{52}_\Lambda$ V Light to medium-heavy Hypernuclei

(e,e'K⁺) reaction

Hypernuclear study with the (e,e'K+) reaction Initiated and established at JLab

$p(e,e'K^+)\Lambda, \Sigma^0$: Elementary Process

¹²C(e,e'K⁺)¹²[^]B

0.5 MeV (FWHM)

Absolute MM calibration

0.7 MeV (FWHM)

¹²C(π^+, K^+)¹² $^{\Lambda}C$ 1.45 MeV (FWHM) ¹² $^{\Lambda}C_{gs}$ energy from emulsion

^{12}AB emulsion data

Nuclear Physics B52 (1973) 1-30.

A NEW DETERMINATION OF THE BINDING-ENERGY VALUES OF THE LIGHT HYPERNUCLEI ($A \le 15$)

Totally independent measurement

Remove apparent A dependence

Shift ${}^{12}{}_{\Lambda}C_{gs} B_{\Lambda} by 0.54 MeV$

Hall A E94-107, Excellent S/N spectra

FIG. 3. The ${}^{12}_{\Lambda}B$ excitation-energy curve) and a theoretical prediction imposed on the data. See text for de

FIG. 3. The $^{16}_{\Lambda}$ N binding-energy spectrum. The best fit using Voigt functions (solid curve) and a theoretical prediction (dashed

imposed on the data. See text for details.

Mysteries in Hypernuclear Physics

Large CSB for A=4 hypernuclei Hyperon Puzzle

Two solar mass neutron stars

Mysteries in Hypernuclear Physics

Large CSB for A=4 hypernuclei

Charge Symmetry Breaking of the AN interaction

Charge Symmetry Breaking for NN system

EM Corrections

 $(a_{pp}) = -7.8 \text{ fm}$ $[a_{pp}]_{SI} = -17.3 \pm 0.4 \text{ fm}$

 $a_{nn} = -18.8 \pm 0.3 \text{ fm}$

 $B(^{3}H) - B(^{3}He) = 764 \text{ keV} [B(^{3}H) - B(^{3}He)]_{SI} = 71 \text{ keV}$

 $\Delta m = m(d) - m(u) \cong 3 MeV$

 $P_{CS}|d\rangle = -|u\rangle$

 $P_{CS}|u\rangle = |d\rangle$

 $ho^0 - \omega$ mixing

A=4 system CSB AN potential

$^{7}_{\Lambda}$ He = 6 He + Λ

⁶He : 2n halo

$^{7}_{\Lambda}$ He spectrum

Juric et al., Nucl. Phys. A484 (1988) 520

No B_{Λ} was obtained.

CSB interaction test in A=7 iso-triplet comparison

SNN et al., PRL 110, 012502 (2013)

CSB interaction test in A=7 CSB potential is not necessary for A=7 Assumed CSB potential is too naïve or problem for A=4 data

 \rightarrow New exps. at MAMI and J-PARC

CSB for A=4 hypernuclei : *Future* Measurements

Isospin dependence of the ANN interaction and Hyperon Puzzle

Mysteries in Hypernuclear Physics

Large CSB for A=4 hypernuclei

Hyperon Puzzle

Two solar mass neutron stars

Hyperon Puzzle

Based on our knowledge on Baryonic Force: **Hyperon should appear at high density (** ρ =2~3 ρ_0)

Too Soft EOS
Contradict
to
observation
2 M_{solar} Neutron Stars

Hyperon Puzzle : One of most important issues to be solved in nuclear physics

EOS of nuclear matter

Microscopic nuclear force model @ $\rho_0 \rightarrow 2 \rho_0$

Higher density

3B/4BF play key roles

Promising scenario to solve Hyp. Puzzle Repulsive 3B/4B force in YN sector

Furumoto, Sakuragi, Yamamoto, PRC 79 (2009) 0011601(R)

AFDMC by Lonardoni et al.

3BRF in hyperon sector is a key to solve *Hyperon Puzzle!*

Mid-heavy data from (π ,K) exp.

From HY to SHM and NS

Phenomenological 3 BRF+AFDMC

$$\boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j = -3P^{\mathrm{T}=0} + \mathrm{C}_{\mathrm{T}} P^{\mathrm{T}=1}$$

 ${}^{40}\text{Ca}(\text{e,e'K}^{+}){}^{40}{}_{\Lambda}\text{K}$ and , ${}^{48}\text{Ca}(\text{e,e'K}^{+}){}^{48}{}_{\Lambda}\text{K}$

New experiment (C2 update) submitted to JLab PAC44

New Project@J-PARC Hadron Experimental hall Extension

Selected as one of 4 high-priority projects at KEK Program Implementation Plan Committee (May 2016)

- Baryon-Baryon Interaction at Short Distances
 - 3 body & 2 body BB interaction

Future Plan at J-PARC : HIHR

Present beam lines: $\sim 10^6$ pions/pulse, $\Delta p/p \sim 1/1000$

- High-Intensity High-Resolution Beam line for High Precision (π , K⁺) Spectroscopy with Δ E=0.1 MeV
 - Dispersion matching + no beam tracking

Intensity: ~ 1.8x10⁸ pion/pulse (1.2 GeV/c, 58 m, 1.4msr*%, 100kW, 6s spill, Pt 60mm) ∆p/p ~ 1/10000

Complementary Program to the JLab program

Summary

Spectroscopy of Lambda hypernuclei with electron beams Established at JLab \Rightarrow Decay π at MAMI Abs. B_{Λ} determination sugg. 0.54MeV shift for all (π, K) Observation of 7_{Λ} He excited state : New possibility to bridge physics of hypernuclei and unstable nuclei. Determination of $B_{\Lambda}(^{7}_{\Lambda}He_{gs})$ triggered intensive study for A=4 iso-doublet hypernuclei (${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He) $\square \longrightarrow Mainz : Decay \pi spectroscopy$ $J-PARC E13 : \gamma-ray spectroscopy$ New experiment for $({}^{40}_{\Lambda}K \text{ and } {}^{48}_{\Lambda}K)$ is planned to clarify the isospin dependence of 3BRF which is necessary to solve Hyperon puzzle. New HIHR beamline @ J-PARC HExH for hypernuclear study