Hyperons in nuclei and neutron stars

Diego Lonardoni
 FRIB Theory Fellow

— EST. 1943 ——_

In collaboration with:
\checkmark Stefano Gandolfi, LANL
\checkmark Alessandro Lovato, ANL
\checkmark Francesco Pederiva, Trento
\checkmark Francesco Catalano, Uppsala

NUCLEI
Nuclear Computational Low-Energy Initiative

Marciana Marina, June 30, 2016

Outline

\checkmark Introduction

- interest and motivations
- hyperon puzzle
\checkmark Quantum Monte Carlo: AFDMC
\checkmark Hyperons in nuclei
\checkmark Hyperons in neutron stars
\checkmark Conclusions

Introduction: non-strange sector

$$
\text { nuclei } A \leq 12
$$

Green's function Monte Carlo (GFMC)
Argonne + Urbana/llinois potentials

Introduction: non-strange sector

Introduction: non-strange sector

Introduction: non-strange sector

Introduction: strange sector

Introduction: strange sector

Introduction: the hyperon puzzle

Hyperon puzzle
\checkmark Indication for the appearance of hyperons in NS core
\checkmark Apparent inconsistency between theoretical calculations and observations

Introduction: the hyperon puzzle

Hyperon puzzle
\checkmark Indication for the appearance of hyperons in NS core
\checkmark Apparent inconsistency between theoretical calculations and observations

Quantum Monte Carlo $\longrightarrow \mathrm{YN}$ interaction

Introduction: the hyperon puzzle

Hyperon puzzle
\checkmark Indication for the appearance of hyperons in NS core
\checkmark Apparent inconsistency between theoretical calculations and observations

Quantum Monte Carlo $\longrightarrow \mathrm{YN}$ interaction

light- to medium-heavy hypernuclei

AFDMC for strange systems

\checkmark AFDMC method

$$
-\frac{\partial}{\partial \tau}|\psi(\tau)\rangle=\left(H-E_{0}\right)|\psi(\tau)\rangle \quad \tau=i t / \hbar \quad \text { imaginary time }
$$

AFDMC for strange systems

\checkmark AFDMC method

$$
\begin{array}{rlrl}
-\frac{\partial}{\partial \tau}|\psi(\tau)\rangle & =\left(H-E_{0}\right)|\psi(\tau)\rangle & & \tau=i t / \hbar \\
& \downarrow & \text { imaginary time } \\
|\psi(\tau)\rangle & =\mathrm{e}^{-\left(H-E_{0}\right) \tau}|\psi(0)\rangle & & |\psi(0)\rangle=\left|\psi_{T}\right\rangle=\sum_{n=0}^{\infty} c_{n}\left|\varphi_{n}\right\rangle
\end{array}
$$

AFDMC for strange systems

\checkmark AFDMC method

$$
\begin{array}{rlrl}
-\frac{\partial}{\partial \tau}|\psi(\tau)\rangle & =\left(H-E_{0}\right)|\psi(\tau)\rangle & \tau=i t / \hbar \quad \text { imaginary time } \\
& \downarrow & \\
|\psi(\tau)\rangle & =\mathrm{e}^{-\left(H-E_{0}\right) \tau}|\psi(0)\rangle & |\psi(0)\rangle=\left|\psi_{T}\right\rangle=\sum_{n=0}^{\infty} c_{n}\left|\varphi_{n}\right\rangle \\
& =\sum_{n=0}^{\infty} \mathrm{e}^{-\left(E_{n}-E_{0}\right) \tau} c_{n}\left|\varphi_{n}\right\rangle \xrightarrow{\tau \rightarrow \infty} c_{0}\left|\varphi_{0}\right\rangle \quad \text { projection }
\end{array}
$$

AFDMC for strange systems

\checkmark AFDMC method

$$
\begin{aligned}
& -\frac{\partial}{\partial \tau}|\psi(\tau)\rangle=\left(H-E_{0}\right)|\psi(\tau)\rangle \quad \quad \tau=i t / \hbar \quad \text { imaginary time } \\
& \downarrow \\
& |\psi(\tau)\rangle=\mathrm{e}^{-\left(H-E_{0}\right) \tau}|\psi(0)\rangle \quad|\psi(0)\rangle=\left|\psi_{T}\right\rangle=\sum_{n=0}^{\infty} c_{n}\left|\varphi_{n}\right\rangle \\
& =\sum_{n=0}^{\infty} \mathrm{e}^{-\left(E_{n}-E_{0}\right) \tau} c_{n}\left|\varphi_{n}\right\rangle \xrightarrow{\tau \rightarrow \infty} c_{0}\left|\varphi_{0}\right\rangle \quad \text { projection } \\
& \sum E=\frac{\langle\psi| H|\psi\rangle}{\langle\psi \mid \psi\rangle} \xrightarrow{\tau \rightarrow \infty} \quad \begin{array}{c}
E_{0}
\end{array} \begin{array}{c}
\text { ground } \\
\text { state }
\end{array}
\end{aligned}
$$

AFDMC for strange systems

\checkmark AFDMC algorithm

- imaginary time projection
\longrightarrow exact ground state
- single particle wf + HS transformation \longrightarrow large number of particles
- stochastic method
\longrightarrow error estimate: $\sigma \sim 1 / \sqrt{\mathcal{N}}$

AFDMC for strange systems

\checkmark AFDMC algorithm

- imaginary time projection
\longrightarrow exact ground state
- single particle wf + HS transformation \longrightarrow large number of particles
- stochastic method
\longrightarrow error estimate: $\sigma \sim 1 / \sqrt{\mathcal{N}}$
\checkmark AFDMC Hamiltonians
- nucleon-nucleon phenomenological interaction: Argonne \& Urbana

$$
H=\sum_{i} \frac{p_{i}^{2}}{2 m_{N}}+\sum_{i<j} v_{i j}+\sum_{i<j<k} v_{i j k}
$$

$$
\text { 2B: } \quad \begin{gathered}
N N \\
\text { scattering }
\end{gathered}+\text { deuteron }
$$

$$
\text { 3B: nuclei }+\begin{gathered}
\text { nuclear } \\
\text { matter }
\end{gathered}
$$

AFDMC for strange systems

\checkmark AFDMC algorithm

- imaginary time projection
\longrightarrow exact ground state
- single particle wf + HS transformation \longrightarrow large number of particles
- stochastic method
\longrightarrow error estimate: $\sigma \sim 1 / \sqrt{\mathcal{N}}$
\checkmark AFDMC Hamiltonians
- nucleon-nucleon phenomenological interaction: Argonne \& Urbana
- hyperon-nucleon phenomenological interaction: Argonne \& Urbana like

$$
\begin{array}{rlr}
H & =\sum_{i} \frac{p_{i}^{2}}{2 m_{N}}+\sum_{i<j} v_{i j}+\sum_{i<j<k} v_{i j k} & 2 \mathrm{~B}: \quad \begin{array}{c}
\Lambda p \\
\text { scattering }
\end{array}+\begin{array}{c}
A=4 \\
\text { CSB }^{\star}
\end{array} \\
& +\sum_{\lambda} \frac{p_{\lambda}^{2}}{2 m_{\Lambda}}+\sum_{\lambda, i} v_{\lambda i}+\sum_{\lambda, i<j} v_{\lambda i j} &
\end{array}
$$

AFDMC for strange systems

\checkmark AFDMC algorithm

- imaginary time projection
\longrightarrow exact ground state
- single particle wf + HS transformation
\longrightarrow large number of particles
- stochastic method
\longrightarrow error estimate: $\sigma \sim 1 / \sqrt{\mathcal{N}}$
\checkmark AFDMC Hamiltonians
- nucleon-nucleon phenomenological interaction: Argonne \& Urbana
- hyperon-nucleon phenomenological interaction: Argonne \& Urbana like

$$
\begin{array}{rlrl}
H & =\sum_{i} \frac{p_{i}^{2}}{2 m_{N}}+\sum_{i<j} v_{i j}+\sum_{i<j<k} v_{i j k} & 2 \mathrm{~B}: & \begin{array}{c}
\Lambda p \\
\text { scattering }
\end{array}+\begin{array}{c}
A=4 \\
\mathrm{CSB}^{\star}
\end{array} \\
& +\sum_{\lambda} \frac{p_{\lambda}^{2}}{2 m_{\Lambda}}+\sum_{\lambda, i} v_{\lambda}\left(+\sum_{\lambda, i<j} v_{\lambda i j}\right. & \text { 3B: } & \text { no unique fit }
\end{array}
$$

AFDMC for strange systems

\checkmark AFDMC algorithm

- imaginary time projection
\longrightarrow exact ground state
- single particle wf + HS transformation
\longrightarrow large number of particles
- stochastic method
\longrightarrow error estimate: $\sigma \sim 1 / \sqrt{\mathcal{N}}$
\checkmark AFDMC Hamiltonians
- nucleon-nucleon phenomenological interaction: Argonne \& Urbana
- hyperon-nucleon phenomenological interaction: Argonne \& Urbana like

$$
\begin{aligned}
& H=\sum_{i} \frac{p_{i}^{2}}{2 m_{N}}+\sum_{i<j} v_{i j}+\sum_{i<j<k} v_{i j k} \\
& \left.+\sum_{\lambda} \frac{p_{\lambda}^{2}}{2 m_{\Lambda}}+\sum_{\lambda, i} v_{\lambda i}+\sum_{\lambda, i<j} v_{\lambda i j}\right) \\
& \text { '?' use QMC to fit hyp. exp. data } \\
& B_{\Lambda}=E\left({ }^{A-1} Z\right)-E\left({ }_{\Lambda}^{A} Z\right) \\
& \text { 3B: } \\
& \text { no unique fit }
\end{aligned}
$$

D. L., F. Pederiva, S. Gandolfi, Phys. Rev. C 89, 014314 (2014)

D. L., F. Pederiva, S. Gandolfi, Phys. Rev. C 89, 014314 (2014)

Hyperons in nuclei

D. L., F. Pederiva, S. Gandolfi, Phys. Rev. C 89, 014314 (2014)

D. L., F. Pederiva, S. Gandolfi, Phys. Rev. C 89, 014314 (2014)

D. L., F. Pederiva, S. Gandolfi, Phys. Rev. C 89, 014314 (2014)
F. Pederiva, F. Catalano, D. L., A. Lovato, S. Gandolfi, arXiv:1506.04042 (2015)

D. L., F. Pederiva, S. Gandolfi, Phys. Rev. C 89, 014314 (2014)
F. Pederiva, F. Catalano, D. L., A. Lovato, S. Gandolfi, arXiv:1506.04042 (2015)

D. L., F. Pederiva, S. Gandolfi, Phys. Rev. C 89, 014314 (2014)
F. Pederiva, F. Catalano, D. L., A. Lovato, S. Gandolfi, arXiv:1506.04042 (2015)

D. L., F. Pederiva, S. Gandolfi, Phys. Rev. C 89, 014314 (2014)
F. Pederiva, F. Catalano, D. L., A. Lovato, S. Gandolfi, arXiv:1506.04042 (2015)

D. L., F. Pederiva, S. Gandolfi, Phys. Rev. C 89, 014314 (2014)
F. Pederiva, F. Catalano, D. L., A. Lovato, S. Gandolfi, arXiv:1506.04042 (2015)

D. L., F. Pederiva, S. Gandolfi, Phys. Rev. C 89, 014314 (2014)
F. Pederiva, F. Catalano, D. L., A. Lovato, S. Gandolfi, arXiv:1506.04042 (2015)

D. L., F. Pederiva, S. Gandolfi, Phys. Rev. C 89, 014314 (2014)
F. Pederiva, F. Catalano, D. L., A. Lovato, S. Gandolfi, arXiv:1506.04042 (2015)

D. L., A. Lovato, S. Gandolfi, F. Pederiva, Phys. Rev. Lett. 114, 092301 (2015)

AFDMC: Argonne + Urbana

Phys. Rev. Lett. 114, 092301 (2015)

G-Matrix: ESC08 + MPa

Phys. Rev. C 90, 045805 (2014)

AFDMC: Argonne + Urbana

Phys. Rev. Lett. 114, 092301 (2015)

$\Lambda N N$ force: no dependence on singlet or triplet nucleon isospin state

3-body interaction \longrightarrow fit on symmetric hypernuclei

$\Lambda N N$ force: no dependence on singlet or triplet nucleon isospin state

sensitivity study:
light- \& medium-heavy hypernuclei

F. Pederiva, F. Catalano, D. L., A. Lovato, S. Gandolfi, arXiv:1506.04042 (2015)

F. Pederiva, F. Catalano, D. L., A. Lovato, S. Gandolfi, arXiv:1506.04042 (2015)

Jefferson Lab
${ }^{48} \mathrm{Ca}\left(e, e^{\prime} K^{+}\right){ }_{\Lambda}^{48} \mathrm{~K}$
${ }^{40} \mathrm{Ca}\left(e, e^{\prime} K^{+}\right){ }_{\Lambda}^{40} \mathrm{~K}$

$$
\begin{aligned}
& 0.070 \\
& A^{-2 / 3} \\
& \delta=\frac{N-Z}{A} \quad{ }^{48} \mathrm{Ca}\left(e, e^{\prime} K^{+}\right){ }_{\Lambda}^{48} \mathrm{~K} \quad{ }^{40} \mathrm{Ca}\left(e, e^{\prime} K^{+}\right){ }_{\Lambda}^{40} \mathrm{~K}
\end{aligned}
$$

preliminary

preliminary

preliminary

P. Bydžovský, M. Sotona, T. Motoba, K. Itonaga,
K. Ogawa, O. Hashimoto,

Nucl. Phys. A 881 (2012) 199-217

$$
\begin{aligned}
& B_{\Lambda}^{s} \simeq 18.0 \mathrm{MeV} \\
& B_{\Lambda}^{p} \simeq 10.7 \mathrm{MeV} \\
& B_{\Lambda}^{d} \simeq 3.3 \mathrm{MeV}
\end{aligned}
$$

hypernucleus	s-wave	p-wave	d-wave
${ }_{\Lambda}^{40} \mathrm{~K}$ AFDMC	$18.63(24)$	$10.99(22)$	$3.93(26)$
${ }_{\Lambda}^{41} \mathrm{Ca}$ AFDMC	$18.31(33)$	$11.46(42)$	$4.32(40)$
${ }_{\Lambda}^{40} \mathrm{Ca}\left(\pi^{+}, K^{+}\right)$	$18.7(1.1)$	-	-
${ }_{\Lambda}^{40} \mathrm{Ca}\left(K^{-}, \pi^{-}\right)$	-	$11.0(5)$	$1.0(5)$

hypernucleus	s-wave	p-wave	d-wave
${ }_{\Lambda}^{40} \mathrm{~K}$ AFDMC	$18.63(24)$	$10.99(22)$	$3.93(26)$
${ }_{\Lambda}^{41} \mathrm{Ca}$ AFDMC	$18.31(33)$	$11.46(42)$	$4.32(40)$
${ }_{\Lambda}^{40} \mathrm{Ca}\left(\pi^{+}, K^{+}\right)$	$187(1.1)$	-	-
${ }_{\Lambda}^{40} \mathrm{Ca}\left(K^{-}, \pi^{-}\right)$	-	$11.0(5)$	1 (\%)

hypernucleus	s-wave	p-wave	d-wave
${ }_{\Lambda}^{40} \mathrm{~K}$ AFDMC	$18.63(24)$	$10.99(22)$	$3.93(26)$
${ }_{\Lambda}^{41} \mathrm{Ca}$ AFDMC	$18.31(33)$	$11.46(42)$	$4.32(40)$
${ }_{\Lambda}^{40} \mathrm{Ca}\left(\pi^{+}, K^{+}\right)$	$187(1.1)$	need of medium-heavy neutron-rich hypernuclei	
${ }_{\Lambda}^{40} \mathrm{Ca}\left(K^{-}, \pi^{-}\right)$	-		

Conclusions

\checkmark The extrapolation from finite size to infinte nuclear systems can be non trivial: need for astrophysical constraints and/or inputs from medium-heavy systems
\checkmark An accurate description of the physics of strange nuclear systems seems to demand for more repulsion (why...?)
\checkmark The presence of hyperons in the core of neutron stars cannot be ruled out based on current information on hyperonnucleon forces
\checkmark Accurate experimental information is needed, in particular for medium-heavy neutron-rich hypernuclei (but also scattering information)
\checkmark Theoretical efforts: extend the progresses reached in AFDMC calculations for nuclei and nuclear matter to the strange
 sector

Thank you!!

Backup: the hyperon puzzle

J. M. Lattimer, Annu. Rev. Nucl. Part. Sci. 2012. 62:485-515

P. Haensel, A. Y. Potekhin, D. G. Yakovlev Neutron Stars 1, Springer 2007

$$
\begin{aligned}
& Q=-1: \mu_{b^{-}}=\mu_{n}+\mu_{e} \\
& Q=0: \mu_{b^{0}}=\mu_{n} \\
& Q=+1: \mu_{b^{+}}=\mu_{n}-\mu_{e}
\end{aligned}
$$

Backup: the hyperon puzzle

$M \sim 1.4 M_{\odot}$

Backup: the hyperon puzzle

Problems
\checkmark Theoretical indication for hyperons in NS core: softening of the EOS
\checkmark Observation of massive NS: stiff EOS
\checkmark Magnitude of the softening: strongly model dependent
\checkmark Interactions poorly known
\checkmark Non trivial many-body problem: very dense system, strong interactions

Backup: terrestrial experiments

\checkmark Charge conserving reactions

$$
\begin{aligned}
& { }^{A} Z\left(K^{-}, \pi^{-}\right)_{\Lambda}^{A} Z \\
& { }^{A} Z\left(\pi^{+}, K^{+}\right)_{\Lambda}^{A} Z
\end{aligned}
$$

\checkmark Single charge exchange reactions (SCX)

$$
\begin{aligned}
& { }^{A} Z\left(K^{-}, \pi^{0}\right)_{\Lambda}^{A}[Z-1] \\
& { }^{A} Z\left(\pi^{-}, K^{0}\right)_{\Lambda}^{A}[Z-1] \\
& { }^{A} Z\left(e, e^{\prime} K^{+}\right)_{\Lambda}^{A}[Z-1]
\end{aligned}
$$

\checkmark Double charge exchange reactions (DCX)

$$
\begin{aligned}
& { }^{A} Z\left(\pi^{-}, K^{+}\right)_{\Lambda}^{A+1}[Z-2] \\
& { }^{A} Z\left(K^{-}, \pi^{+}\right){ }_{\Lambda}^{A+1}[Z-2]
\end{aligned}
$$

Backup: terrestrial experiments

$$
{ }^{89} \mathrm{Y}\left(\pi^{+}, K^{+}\right){ }_{\Lambda}^{89} \mathrm{Y}
$$

SKS spectrometer
KEK 12-GeV Proton Synchrotron
Japan

$$
M_{H Y}=\sqrt{\left(E_{\pi}+M_{A}-E_{K}\right)^{2}-\left(p_{\pi}^{2}+p_{K}^{2}-2 p_{\pi} p_{K} \cos \theta\right)}
$$

$$
B_{\Lambda}=M_{A-1}+M_{\Lambda}-M_{H Y}
$$

$$
\left(\frac{d \sigma}{d \Omega}\right)=\frac{A}{\rho_{x} \cdot N_{\mathcal{A}}} \cdot \frac{1}{N_{\text {beam }} \cdot f_{\text {beam }}} \cdot \frac{N_{K}}{\varepsilon_{\exp } \cdot d \Omega}
$$

$$
\bar{\sigma}_{2^{\circ}-14^{\circ}}=\int_{\theta=2^{\circ}}^{\theta=14^{\circ}}\left(\frac{d \sigma}{d \Omega}\right) d \Omega / \int_{\theta=2^{\circ}}^{\theta=14^{\circ}} d \Omega
$$

H. Hotchi et al., Phys. Rev. C 64, 044302 (2001)

Backup: hyperon-nucleon interaction

\checkmark one boson exchange model Nijmegen \& Jülich

Th. A. Rijken, M. M. Nagels, Y. Yamamoto,
Few-Body Syst. (2013) 54, 801

$\checkmark \quad \chi$-EFT (NLO)

J. Haidenbauer, S. Petschauer, N. Kaiser, U. -G. Meißner, A. Nogga, W. Weise, Nucl. Phys. A 915 (2013) 24-58
J. Haidenbauer, Ulf-G. Meißner,

Phys. Rev. C 72, 044005 (2005)

\checkmark effective - mean field models

- cluster approach
E. Hiyama, Y. Yamamoto,

Prog. Theor. Phys. (2012) 128 (1) 105

- Skyrme-Hartree-Fock
H.-J. Schulze, E. Hiyama

Phys. Rev. C 90, 047301 (2014)

Backup: hyperon-nucleon interaction

\checkmark 2-body interaction: AV18 \& Usmani
$N N\left\{\begin{array}{lrr}v_{i j}=\sum_{p=1,18} v_{p}\left(r_{i j}\right) \mathcal{O}_{i j}^{p} & N N \\ \mathcal{O}_{i j}^{p=1,8}=\left\{1, \sigma_{i j}, S_{i j}, \boldsymbol{L}_{i j} \cdot \boldsymbol{S}_{i j}\right\} \otimes\left\{1, \tau_{i j}\right\} & \text { scattering } \\ \text { deuteron }\end{array}\right.$
$\Lambda N\left\{\begin{array}{l}v_{\lambda i}=\sum_{p=1,4} v_{p}\left(r_{\lambda i}\right) \mathcal{O}_{\lambda i}^{p} \\ \mathcal{O}_{\lambda i}^{p=1,4}=\left\{1, \sigma_{\lambda i}\right\} \otimes\left\{1, \tau_{i}^{z}\right\}\end{array}\right.$
Λp scattering
$A=4 \quad$ CSB

Note: \quad| $\Lambda \pi \nu$ fortex |
| :--- |
| 2π exchange |

Backup: hyperon-nucleon interaction

\checkmark 3-body interaction: Urbana IX \& Usmani

Backup: hyperon-nucleon interaction

\checkmark 2-body interaction

$$
\begin{aligned}
& v_{\lambda i}=v_{0}\left(r_{\lambda i}\right)+\frac{1}{4} v_{\sigma} T_{\pi}^{2}\left(r_{\lambda i}\right) \boldsymbol{\sigma}_{\lambda} \cdot \boldsymbol{\sigma}_{i} \\
& v_{\lambda i}^{C S B}=C_{\tau} T_{\pi}^{2}\left(r_{\lambda i}\right) \tau_{i}^{z}
\end{aligned}
$$

charge symmetric
charge symmetry breaking
(spin independent)
A. R. Bodmer, Q. N. Usmani, Phys.Rev.C 31, 1400 (1985)
\checkmark 3-body interaction

$$
v_{\lambda i j}=v_{\lambda i j}^{2 \pi, P}+v_{\lambda i j}^{2 \pi, S}+v_{\lambda i j}^{D}
$$

$$
\left\{\begin{aligned}
v_{\lambda i j}^{2 \pi, P} & =-\frac{C_{P}}{6}\left\{X_{i \lambda}, X_{\lambda j}\right\} \boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{j} \\
v_{\lambda i j}^{2 \pi, S} & =C_{S} Z\left(r_{\lambda i}\right) Z\left(r_{\lambda j}\right) \boldsymbol{\sigma}_{i} \cdot \hat{\boldsymbol{r}}_{i \lambda} \boldsymbol{\sigma}_{j} \cdot \hat{\boldsymbol{r}}_{j \lambda} \boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{j} \\
v_{\lambda i j}^{D} & =W_{D} T_{\pi}^{2}\left(r_{\lambda i}\right) T_{\pi}^{2}\left(r_{\lambda j}\right)\left[1+\frac{1}{6} \boldsymbol{\sigma}_{\lambda} \cdot\left(\boldsymbol{\sigma}_{i}+\boldsymbol{\sigma}_{j}\right)\right]
\end{aligned}\right.
$$

use QMC to fit on hyp. exp. data

Backup: hyperon-nucleon interaction

$$
\begin{aligned}
v_{0}(r) & =v_{c}(r)-\bar{v} T_{\pi}^{2}(r) \\
v_{c}(r) & =W_{c}\left(1+\mathrm{e}^{\frac{r-\bar{r}}{a}}\right)^{-1} \\
\bar{v} & =\left(v_{s}+3 v_{t}\right) / 4 \quad v_{\sigma}=v_{s}-v_{t} \\
Y_{\pi}(r) & =\frac{\mathrm{e}^{-\mu_{\pi} r}}{\mu_{\pi} r} \xi_{Y}(r) \\
T_{\pi}(r) & =\left[1+\frac{3}{\mu_{\pi} r}+\frac{3}{\left(\mu_{\pi} r\right)^{2}}\right] \frac{\mathrm{e}^{-\mu_{\pi} r}}{\mu_{\pi} r} \xi_{T}(r) \\
\mu_{\pi} & =\frac{m_{\pi}}{\hbar}=\frac{1}{\hbar} \frac{m_{\pi^{0}}+2 m_{\pi^{ \pm}}}{3} \\
\xi_{Y}(r) & =\xi_{T}^{1 / 2}(r)=1-\mathrm{e}^{-c r^{2}} \\
Z_{\pi}(r) & =\frac{\mu_{\pi} r}{3}\left[Y_{\pi}(r)-T_{\pi}(r)\right] \\
X_{\lambda i} & =Y_{\pi}\left(r_{\lambda i}\right) \boldsymbol{\sigma}_{\lambda} \cdot \boldsymbol{\sigma}_{i}+T_{\pi}\left(r_{\lambda i}\right) S_{\lambda i} \\
S_{\lambda i} & =3\left(\boldsymbol{\sigma}_{\lambda} \cdot \hat{\boldsymbol{r}}_{\lambda i}\right)\left(\boldsymbol{\sigma}_{i} \cdot \hat{\boldsymbol{r}}_{\lambda i}\right)-\boldsymbol{\sigma}_{\lambda} \cdot \boldsymbol{\sigma}_{i}
\end{aligned}
$$

Constant	Value	Unit
W_{c}	2137	MeV
\bar{r}	0.5	fm
a	0.2	fm
v_{s}	$6.33,6.28$	MeV
v_{t}	$6.09,6.04$	MeV
\bar{v}	$6.15(5)$	MeV
v_{σ}	0.24	MeV
c	2.0	$\mathrm{fm}{ }^{-2}$
C_{τ}	$-0.050(5)$	MeV
C_{P}	$0.5 \div 2.5$	MeV
C_{S}	$\simeq 1.5$	MeV
W_{D}	$0.002 \div 0.058$	MeV

\checkmark AFDMC propagation

$$
\langle S R \mid \psi(\tau+d \tau)\rangle=\int d R^{\prime} d S^{\prime}\langle S R| \mathrm{e}^{-\left(H-E_{0}\right) d \tau}\left|R^{\prime} S^{\prime}\right\rangle\left\langle S^{\prime} R^{\prime} \mid \psi_{T}(\tau)\right\rangle
$$

diffusion (DMC): $d \tau$ rotation (AF): $\sqrt{d \tau}$

\checkmark AFDMC wave function: single particle representation

$$
\begin{gathered}
\psi_{T}(R, S)=\quad \psi_{T}^{N}\left(R_{N}, S_{N}\right) \\
\left\{\begin{array}{c}
\psi_{T}^{\kappa}\left(R_{\kappa}, S_{\kappa}\right)=\prod_{i<j} f_{c}^{\kappa \kappa}\left(r_{i j}\right) \Phi_{\kappa}\left(R_{\kappa}, S_{\kappa}\right) \quad \kappa=N \\
\Phi_{\kappa}\left(R_{\kappa}, S_{\kappa}\right)=\mathcal{A}\left[\prod_{i=1}^{\mathcal{N}_{\kappa}} \varphi_{\epsilon}^{\kappa}\left(\boldsymbol{r}_{i}, s_{i}\right)\right]=\operatorname{det}\left\{\varphi_{\epsilon}^{\kappa}\left(\boldsymbol{r}_{i}, s_{i}\right)\right\} \xrightarrow{\text { s.p. orbitals }} \text { plane waves }
\end{array}\right. \\
s_{i}=\left(\begin{array}{c}
a_{i} \\
b_{i} \\
c_{i} \\
d_{i}
\end{array}\right)_{i}=a_{i}|p \uparrow\rangle_{i}+b_{i}|p \downarrow\rangle_{i}+c_{i}|n \uparrow\rangle_{i}+d_{i}|n \downarrow\rangle_{i}
\end{gathered}
$$

\checkmark AFDMC wave function: single particle representation

$$
\begin{gathered}
\psi_{T}(R, S)=\prod_{\lambda i} f_{c}^{\Lambda N}\left(r_{\lambda i}\right) \psi_{T}^{N}\left(R_{N}, S_{N}\right) \psi_{T}^{\Lambda}\left(R_{\Lambda}, S_{\Lambda}\right) \\
\left\{\begin{array}{c}
\psi_{T}^{\kappa}\left(R_{\kappa}, S_{\kappa}\right)=\prod_{i<j} f_{c}^{\kappa \kappa}\left(r_{i j}\right) \Phi_{\kappa}\left(R_{\kappa}, S_{\kappa}\right) \quad \kappa=N, \Lambda \\
\Phi_{\kappa}\left(R_{\kappa}, S_{\kappa}\right)=\mathcal{A}\left[\prod_{i=1}^{\mathcal{N}_{\kappa}} \varphi_{\epsilon}^{\kappa}\left(\boldsymbol{r}_{i}, s_{i}\right)\right]=\operatorname{det}\left\{\varphi_{\epsilon}^{\kappa}\left(\boldsymbol{r}_{i}, s_{i}\right)\right\} \nrightarrow \text { p.p. orbitals } \\
s_{i}=\left(\begin{array}{c}
a_{i} \\
c_{i} \\
d_{i}
\end{array}\right)_{i}=a_{i}|p \uparrow\rangle_{i}+b_{i}|p \downarrow\rangle_{i}+c_{i}|n \uparrow\rangle_{i}+d_{i}|n \downarrow\rangle_{i} \\
s_{\lambda}=\binom{u_{\lambda}}{v_{\lambda}}_{\lambda}=u_{\lambda}|\Lambda \uparrow\rangle_{\lambda}+v_{\lambda}|\Lambda \downarrow\rangle_{\lambda}
\end{array}\right.
\end{gathered}
$$

Backup: AFDMC

\checkmark diffusion Monte Carlo

$$
\begin{array}{rlrl}
-\frac{\partial}{\partial \tau}|\psi(\tau)\rangle & =\left(H-E_{0}\right)|\psi(\tau)\rangle & \tau=i t / \hbar \quad & \text { imaginary time } \\
& \downarrow & \\
|\psi(\tau)\rangle & =\mathrm{e}^{-\left(H-E_{0}\right) \tau}|\psi(0)\rangle & |\psi(0)\rangle=\left|\psi_{T}\right\rangle=\sum_{n=0}^{\infty} c_{n}\left|\varphi_{n}\right\rangle \\
& =\sum_{n=0}^{\infty} \mathrm{e}^{-\left(E_{n}-E_{0}\right) \tau} c_{n}\left|\varphi_{n}\right\rangle \xrightarrow{\tau \rightarrow \infty} c_{0}\left|\varphi_{0}\right\rangle \quad \text { projection }
\end{array}
$$

$$
\sum E=\frac{\langle\psi| H|\psi\rangle}{\langle\psi \mid \psi\rangle} \xrightarrow{\tau \rightarrow \infty} \quad E_{0} \quad \begin{gathered}
\text { ground } \\
\text { state }
\end{gathered}
$$

Backup: AFDMC

\checkmark diffusion Monte Carlo

$$
\text { imaginary time evolution: } \quad \tau=\mathcal{M} d \tau \quad d \tau \ll 1
$$

$$
\langle S R \mid \psi(\tau+d \tau)\rangle=\int d R^{\prime} d S^{\prime}\langle S R| \mathrm{e}^{-\left(H-E_{0}\right) d \tau}\left|R^{\prime} S^{\prime}\right\rangle\left\langle S^{\prime} R^{\prime} \mid \psi_{T}(\tau)\right\rangle
$$

$$
\begin{array}{ccc}
\begin{array}{c}
\text { final } \\
\text { walkers }
\end{array} & \text { propagator } & \begin{array}{c}
\text { initial } \\
\text { walkers }
\end{array} \\
\left\{\boldsymbol{r}^{*}, s^{*}\right\}_{w} & \longleftarrow & \{\boldsymbol{r}, s\}_{w}
\end{array}
$$

Backup: AFDMC

\checkmark diffusion Monte Carlo

$$
\text { imaginary time evolution: } \quad \tau=\mathcal{M} d \tau \quad d \tau \ll 1
$$

$$
\langle S R \mid \psi(\tau+d \tau)\rangle=\int d R^{\prime} d S^{\prime}\langle S R| \mathrm{e}^{-\left(H-E_{0}\right) d \tau}\left|R^{\prime} S^{\prime}\right\rangle\left\langle S^{\prime} R^{\prime} \mid \psi_{T}(\tau)\right\rangle
$$

$$
\begin{array}{ccc}
\begin{array}{c}
\text { final } \\
\text { walkers }
\end{array} & \text { propagator } & \begin{array}{c}
\text { initial } \\
\text { walkers }
\end{array} \\
\left\{\boldsymbol{r}_{0}, s_{0}\right\}_{w} & \leftarrow \infty \leftarrow \tau & \infty \leftarrow \mathcal{M}
\end{array}
$$

propagator: $H=T \longrightarrow$ diffusion in coordinate space

$$
\begin{aligned}
& +V(\boldsymbol{r}) \longrightarrow \quad \text { branching of configurations } \\
& +V(s) \longrightarrow \text { problem !! }
\end{aligned}
$$

Backup: AFDMC

\checkmark auxiliary field

$$
\mathcal{P} \sim \mathrm{e}^{-\frac{1}{2} \gamma d \tau \mathcal{O}^{2}} \quad \longrightarrow \quad \mathrm{e}^{-\frac{1}{2} \gamma d \tau \mathcal{O}^{2}} \bigotimes_{i}|S\rangle_{i} \neq \bigotimes_{i}|\tilde{S}\rangle_{i}
$$

many body

$$
|S\rangle: \quad 2^{A} \frac{A!}{(A-Z)!Z!} \quad \text { components }
$$

GFMC: $A \leq 12$
single particle

$$
|S\rangle=\bigotimes|S\rangle_{i}: \quad 4 A \quad \text { components }
$$

$$
\text { AFDMC: } A \sim 90
$$

Idea: Hubbard-Stratonovich transformation

$$
\mathrm{e}^{-\frac{1}{2} \gamma d \tau \mathcal{O}^{2}}=\frac{1}{\sqrt{2 \pi}} \int d x \mathrm{e}^{-\frac{x^{2}}{2}+\sqrt{-\gamma d \tau} x \mathcal{O}}
$$

\checkmark auxiliary field diffusion Monte Carlo
diffusion (DMC)

branching

Backup: strangeness in QMC calculations

$$
\begin{aligned}
V_{N N}^{S D}+V_{\Lambda N}^{S D} & =\frac{1}{2} \sum_{n=1}^{3 \mathcal{N}_{N}} \lambda_{n}^{[\sigma]}\left(\mathcal{O}_{n}^{[\sigma]}\right)^{2} & A_{i \alpha, j \beta}^{[\sigma]} & \\
& +\frac{1}{2} \sum_{n=1}^{3 \mathcal{N}_{N}} \sum_{\alpha=1}^{3} \lambda_{n}^{[\sigma \tau]}\left(\mathcal{O}_{n \alpha}^{[\sigma \tau]}\right)^{2} & A_{i \alpha, j \beta}^{[\sigma \tau]} & \lambda_{n} \text { eigenvalues } \\
& +\frac{1}{2} \sum_{n=1}^{\mathcal{N}_{N}} \sum_{\alpha=1}^{3} \lambda_{n}^{[\tau]}\left(\mathcal{O}_{n \alpha}^{[\tau]}\right)^{2} & A_{i j}^{[\tau]} & \psi_{n} \text { eigenvectors } \\
& +\frac{1}{2} \sum_{n=1}^{\mathcal{N}_{\Lambda}} \sum_{\alpha=1}^{3} \lambda_{n}^{\left[\sigma_{\Lambda}\right]}\left(\mathcal{O}_{n \alpha}^{\left[\sigma_{\Lambda}\right]}\right)^{2} & C_{\lambda \mu}^{[\sigma]} & \mathcal{O}_{n}=\sigma_{n} \psi_{n} \\
& +\frac{1}{2} \sum_{n=1}^{\mathcal{N}_{N} \mathcal{N}_{\Lambda}} \sum_{\alpha=1}^{3} B_{n}^{[\sigma]}\left(\mathcal{O}_{n \alpha}^{\left[\sigma_{\Lambda N}\right]}\right)^{2} & & \\
& +\sum_{i=1}^{\mathcal{N}_{N}} B_{i}^{[\tau]} \tau_{i}^{z} & &
\end{aligned}
$$

Backup: strangeness in QMC calculations

computing time

- 5000 configurations, 3 time steps: nucleus \& hypernucleus
- 10 nodes @ Edison (NERSC)

$\longrightarrow \quad 240$ processors

- 2 socket 12-core Intel "Ivy Bridge" processor @ 2.4 GHz

system	CPU time	B_{Λ} error
${ }_{\Lambda}^{41} \mathrm{Ca}-{ }^{40} \mathrm{Ca}$	$\sim 30 \mathrm{k} \mathrm{hrs}$	$\sim 0.75 \mathrm{MeV}$
${ }_{\Lambda}^{49} \mathrm{Ca}-{ }^{48} \mathrm{Ca}$	$\sim 55 \mathrm{k} \mathrm{hrs}$	$\sim 0.75 \mathrm{MeV}$
${ }_{\Lambda}^{91} \mathrm{Zr}-{ }^{90} \mathrm{Zr}$	$\sim 350 \mathrm{k} \mathrm{hrs}$	$\sim 0.75 \mathrm{MeV}$
${ }_{\Lambda}^{209} \mathrm{~Pb}-{ }^{208} \mathrm{~Pb}$	$\sim 4.2 \mathrm{M} \mathrm{hrs}$	$\sim 0.75 \mathrm{MeV}$
AFDMC	$\sim A^{3}$	$\sigma \sim 1 / \sqrt{\mathcal{N}}$
	\downarrow	
calculation accessible		
B_{Λ} in all waves, $A \pm 1$		

Backup: strangeness in nuclei

Backup: strangeness in nuclei

D. L., A. Lovato, S. Gandolfi, F. Pederiva, arXiv:1508.04722 (2015)

$$
\left.\begin{array}{cccccc}
n & n & n & p & n & \Lambda
\end{array}\right) n
$$

hyper-nuclear matter

Backup: strangeness in neutron stars

equilibrium condition: chemical potentials

$$
\mu_{\Lambda}\left(\rho_{b}, x_{\Lambda}\right)=\mu_{n}\left(\rho_{b}, x_{\Lambda}\right)
$$

lambda-neutron matter

EOS $\left\{\begin{aligned} E_{\mathrm{HNM}} & \equiv E_{\mathrm{HNM}}\left(\rho_{b}\right) \\ \mathcal{E}_{\mathrm{HNM}} & \equiv \mathcal{E}_{\mathrm{HNM}}\left(\rho_{b}\right) \\ P_{\mathrm{HNM}} & \equiv P_{\mathrm{HNM}}\left(\rho_{b}\right)\end{aligned}\right\rangle \operatorname{TOV}\left\{\begin{array}{c}M(R) \\ M_{\mathrm{max}}\end{array}\right.$

$$
E_{\mathrm{HNM}} \equiv E_{\mathrm{HNM}}\left(\rho_{b}, x_{\Lambda}\right) \quad \longleftrightarrow \quad \begin{aligned}
& \text { AFDMC calculations } \\
& \text { neutrons }+ \text { lambdas }
\end{aligned}
$$

Backup: strangeness in neutron stars

neutrons
lambdas

$$
\left\{\begin{array} { l }
{ \rho _ { b } = \rho _ { n } + \rho _ { \Lambda } } \\
{ x _ { \Lambda } = \frac { \rho _ { \Lambda } } { \rho _ { b } } }
\end{array} \quad \left\{\begin{array}{l}
\rho_{n}=\left(1-x_{\Lambda}\right) \rho_{b} \\
\rho_{\Lambda}=x_{\Lambda} \rho_{b}
\end{array}\right.\right.
$$

$$
\begin{aligned}
E_{\mathrm{HNM}}\left(\rho_{b}, x_{\Lambda}\right) & =\left[E_{\mathrm{PNM}}\left(\left(1-x_{\Lambda}\right) \rho_{b}\right)+m_{n}\right]\left(1-x_{\Lambda}\right) \\
& +\left[E_{\Lambda}^{F}\left(x_{\Lambda} \rho_{b}\right)+m_{\Lambda}\right] x_{\Lambda}+f\left(\rho_{b}, x_{\Lambda}\right)
\end{aligned}
$$

Problem1: limitation in x_{Λ} due to simulation box
Problem2: finite size effects
Problem3: fitting procedure

$$
f\left(\rho_{b}, x_{\Lambda}\right) \quad \begin{gathered}
\text { cluster } \\
\text { expansion }
\end{gathered} \frac{\rho_{\Lambda} \rho_{n}}{\rho_{b}}, \frac{\rho_{\Lambda} \rho_{n} \rho_{n}}{\rho_{b}}, \frac{\rho_{\Lambda} \rho_{\Lambda} \rho_{n}}{\rho_{b}}, \frac{\rho_{\Lambda} \rho_{n} \rho_{2} \rho_{n}}{\rho_{b}}
$$

$$
\left\{\begin{array}{l}
\mu_{n}\left(\rho_{b}, x_{\Lambda}\right)=E_{\mathrm{PNM}}\left(\rho_{n}\right)+\rho_{n} \frac{\partial E_{\mathrm{PNM}}}{\partial \rho_{n}}+m_{n}+f\left(\rho_{b}, x_{\Lambda}\right)+\rho_{b} \frac{\partial f}{\partial \rho_{n}} \\
\mu_{\Lambda}\left(\rho_{b}, x_{\Lambda}\right)=E_{\Lambda}^{F}\left(\rho_{\Lambda}\right)+\rho_{\Lambda} \frac{\partial E_{\Lambda}^{F}}{\partial \rho_{\Lambda}}+m_{\Lambda}+f\left(\rho_{b}, x_{\Lambda}\right)+\rho_{b} \frac{\partial f}{\partial \rho_{\Lambda}}
\end{array}\right.
$$

equilibrium condition:

$$
\mu_{\Lambda}\left(\rho_{b}, x_{\Lambda}\right)=\mu_{n}\left(\rho_{b}, x_{\Lambda}\right)
$$

$$
\begin{gathered}
\rho_{\Lambda}^{t h} \quad @ \quad x_{\Lambda} \rightarrow 0 \\
x_{\Lambda} \equiv x_{\Lambda}\left(\rho_{b}\right)
\end{gathered}
$$

$\mu_{\Lambda}\left(\rho_{b}, x_{\Lambda}\right)$

Backup: strangeness in neutron stars

D. L., A. Lovato, S. Gandolfi, F. Pederiva, Phys. Rev. Lett. 114, 092301 (2015)

Backup: strangeness in neutron stars

Phys. Rev. Lett. 114, 092301 (2015)
Phys. Rev. C 90, 045805 (2014)

Phys. Rev. C 89, 014314 (2014), arXiv:1506.04042 (2015)

Backup: strangeness in neutron stars

Phys. Rev. C 89, 014314 (2014), arXiv:1506.04042 (2015)
Phys. Rev. C 90, 045805 (2014)

Phys. Rev. Lett. 114, 092301 (2015)
Phys. Rev. C 90, 045805 (2014)

Backup: strangeness in nuclei

\checkmark 3-body interaction \longrightarrow fit on symmetric hypernuclei

$$
\begin{aligned}
& v_{\lambda i j}=v_{\lambda i j}^{2 \pi, P}+v_{\lambda i j}^{2 \pi, S}+v_{\lambda i j}^{D} \\
& \left\{\begin{array}{l}
v_{\lambda i j}^{2 \pi, P}=-\frac{C_{P}}{6}\left\{X_{i \lambda}, X_{\lambda j}\right\} \boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{j} \\
v_{\lambda i j}^{2 \pi, S}=C_{S} Z\left(r_{\lambda i}\right) Z\left(r_{\lambda j}\right) \boldsymbol{\sigma}_{i} \cdot \hat{\boldsymbol{r}}_{i \lambda} \boldsymbol{\sigma}_{j} \cdot \hat{\boldsymbol{r}}_{j \lambda} \boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{j} \\
v_{\lambda i j}^{D}=W_{D} T_{\pi}^{2}\left(r_{\lambda i}\right) T_{\pi}^{2}\left(r_{\lambda j}\right)\left[1+\frac{1}{6} \boldsymbol{\sigma}_{\lambda} \cdot\left(\boldsymbol{\sigma}_{i}+\boldsymbol{\sigma}_{j}\right)\right]
\end{array}\right. \\
& \boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{j}=-3 \mathcal{P}^{T=0} \underbrace{\left.\mathcal{P}^{T=1}\right)} \\
& \text { isospin projectors }
\end{aligned}
$$

nucleon-nucleon interaction

nucleus	AV^{\prime}	$\mathrm{AV6}^{\prime}$	$\mathrm{AV7}^{\prime}$	$\mathrm{AV}^{\prime}+\mathrm{UIX}_{\mathrm{c}}$	\exp
${ }^{4} \mathrm{He}\left(0^{+}\right)$	$-32.83(5)$	$-27.09(3)$	$-25.7(2)$	$-26.63(2)$	-28.295
${ }^{15} \mathrm{O}\left(\frac{1}{2}^{-}\right)$	-	-	-	$-99.43(2)$	-111.955
${ }^{16} \mathrm{O}\left(0^{+}\right)$	$-180.1(4)$	$-115.6(3)$	$-90.6(4)$	$-119.9(2)$	-127.619
${ }^{39} \mathrm{~K}\left(\frac{3}{2}^{+}\right)$	-	-	-	$-360.8(2)$	-333.724
${ }^{40} \mathrm{Ca}\left(0^{+}\right)$	$-597(3)$	$-322(2)$	$-209(1)$	$-383.3(3)$	-342.051
${ }^{44} \mathrm{Ca}\left(0^{+}\right)$	-	-	-	$-397.8(5)$	-380.960
${ }^{47} \mathrm{~K}\left(\frac{1}{2}^{+}\right)$	-	-	preliminary	$-386.3(2)$	-400.199
${ }^{48} \mathrm{Ca}\left(0^{+}\right)$	$-645(3)$	-	-	$-413.2(3)$	-416.001

S. Gandolfi, A. Lovato, J. Carlson, K. E. Schmidt, Phys. Rev. C 90, 061306(R) (2014) F. Pederiva, F. Catalano, D. L., A. Lovato, S. Gandolfi, arXiv:1506.04042 (2015)

