The 3-D nucleon structure (and the EIC - Talk by R. Yoshida)

Mauro Anselmino - Torino University \& INFN Lepton-Nucleus Scattering XIV - Elba June 27, 2016
usual (successful) way of exploring the proton structure (collinear parton model)

DIS : $\ell p \rightarrow \ell X$

$$
Q^{2}=-q^{2} \quad x=\frac{Q^{2}}{2 P \cdot q} \quad y=\frac{P \cdot \ell}{P \cdot q}
$$

Naive parton model: $\frac{\mathrm{d} \sigma^{\ell p \rightarrow \ell}}{\mathrm{~d} x \mathrm{~d} Q^{2}}=\sum_{q} e_{q}^{2} q(x) \frac{\mathrm{d} \hat{\sigma}^{\ell q \rightarrow \ell q}}{\mathrm{~d} Q^{2}}$

QCD interactions induce a well known Q^{2} dependence

$$
\mathrm{DIS}-\mathrm{pQCD}: \quad q(x) \Rightarrow \underbrace{q\left(x, Q^{2}\right)}_{\text {PDFs }}
$$

factorization:

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} x \mathrm{~d} Q^{2}}=\sum_{q} q\left(x, Q^{2}\right) \otimes \frac{\mathrm{d} \hat{\sigma}_{q}}{\mathrm{~d} Q^{2}}
$$

universality: same $q\left(x, Q^{2}\right)$ measured in DIS can be used in other processes

H1 and ZEUS

$F_{2}=\sum_{q} x q\left(x, Q^{2}\right) \quad$ from M. Pennington, arXiv:1604.01441

N	x
0	0.85
1	0.74
2	0.65
3	0.55
4	0.45
5	0.34
6	0.28
7	0.23
8	0.18
9	0.14
10	0.11
11	0.10
12	0.09
13	0.07
14	0.05
15	0.04
16	0,026
17	0,018
18	0,013
19	0,008
20	0,005

JLab inser \dagger

I	\circ	N
A	38°	0
B	41°	1
C	45°	2
D	55°	3
E	60°	4
F	70°	5

H1 and ZEUS

unpolarized distribution
 $x f_{a}\left(x, Q^{2}\right)$

H. Abramowicz et al., Eur. Phys. J. C75 (2015) 580

PDFs are

 very useful, but do we really know the partonic nucleon structure?despite 50 years of studies the nucleon is still a very mysterious object, and the most abundant piece of matter in the visible Universe

what would we like to know? how?

$$
P-\frac{1}{2} \Delta-\nmid \nmid \quad \forall k+\frac{1}{2} \Delta
$$

$$
\begin{aligned}
& H(k, P, \Delta)=(2 \pi)^{-4} \int d^{4} z e^{i z k} \\
& \quad \times\left\langle p\left(P+\frac{1}{2} \Delta\right)\right| \bar{q}\left(-\frac{1}{2} z\right) \Gamma q\left(\frac{1}{2} z\right)\left|p\left(P-\frac{1}{2} \Delta\right)\right\rangle
\end{aligned}
$$

two-quark correlation function
light-cone variables $\quad v=\left(v^{+}, v^{-}, \boldsymbol{v}\right) \quad v^{ \pm}=\frac{1}{\sqrt{2}}\left(v^{0} \pm v^{3}\right)$

$$
x=\frac{k^{+}}{P^{+}} \quad 2 \xi=-\frac{\Delta^{+}}{P^{+}}
$$

$\Delta=0$ inclusive processes, cross sections
$\Delta \neq 0$ exclusive processes, amplitudes
actually, things are not so simple... (example of D-Y process)

...the physical effects of these gluons are represented by Wilson line operators between the fields in the parton correlation function (integrated over k^{-}) and by so called soft factors, which are vacuum expectation values of further Wilson lines and can be absorbed in the definition of the TMDs...
$\left\langle p\left(P+\frac{1}{2} \Delta\right)\right| \bar{q}\left(-\frac{1}{2} z\right) \Gamma q\left(\frac{1}{2} z\right)\left|p\left(P-\frac{1}{2} \Delta\right)\right\rangle \rightarrow\left\langle p\left(P+\frac{1}{2} \Delta\right)\right| \bar{q}\left(-\frac{1}{2} z\right)$ Г(W) $q\left(\frac{1}{2} z\right)\left|p\left(P-\frac{1}{2} \Delta\right)\right\rangle$
the Wilson lines are path-ordered exponential of the gauge field and turn the operator product into a gauge invariant operator, but induce some process dependence
M. Diehl, arXiv:1512.01328
J. Collins, Cambridge University Press (2011)

The nucleon landscape
 Markus Diehl, arXiv:1512.01328

Burkardt, Pasquini, arXiv:1510.02567

special issue of EPJA dedicated to the 3D nucleon structure, to appear soon (15 contributions, Editors M.A., P. Rossi. M. Guidal)

TMD formalism - The nucleon correlator, in collinear configuration: 3 distribution functions

$$
\begin{aligned}
\Phi_{i j}(k ; P, S) & =\sum_{X} \int \frac{\mathrm{~d}^{3} \boldsymbol{P}_{X}}{(2 \pi)^{3} 2 E_{X}}(2 \pi)^{4} \delta^{4}\left(P-k-P_{X}\right)\langle P S| \bar{\Psi}_{j}(0)|X\rangle\langle X| \Psi_{i}(0)|P S\rangle \\
& =\int \mathrm{d}^{4} \xi e^{i k \cdot \xi}\langle P S| \bar{\Psi}_{j}(0) \Psi_{i}(\xi)|P S\rangle \\
\Phi(x, S) & =\frac{1}{2} \underbrace{f_{1}(x)}_{P, S} h_{+}+S_{L} \underbrace{\Delta q}_{\Delta_{1 L}(x)} \gamma^{5} h_{+}
\end{aligned}
$$

TMD-PDFs: the leading-twist correlator, with intrinsic k_{\perp}, contains 8 independent functions

$$
\begin{array}{rl}
\Phi\left(x, \boldsymbol{k}_{\perp}\right) & =\frac{1}{2}\left[f_{J}\right) h_{+}+\left(f_{1-1}^{\perp}\right) \\
& +\epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} n_{+}^{\nu} k_{\perp}^{\rho} S_{T}^{\sigma} \\
M & i \sigma_{\mu \nu} \gamma^{5} n_{+}^{\mu} S_{T}^{\nu}+\left(S_{L}\left(S_{L}\left(h_{1 L}^{\perp}\right)+\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{T}}{M}+\frac{\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{T}}{M}\left(h_{1 T}^{\perp}\right)\right) \frac{i g_{\mu \nu}^{\perp} \gamma^{5} n_{+}^{\mu} k_{\perp}^{\nu}}{M}\right) \gamma^{5} h_{+} \\
& \left.+\left(h_{1}^{\perp}\right) \frac{\sigma_{\mu \nu} k_{\perp}^{\mu} n_{+}^{\nu}}{M}\right]
\end{array}
$$

with partonic interpretation

TMDs in simple parton model

TMDs = Transverse Momentum Dependent Parton Distribution Functions (TMD-PDF) or Transverse Momentum Dependent Fragmentation Functions (TMD-FF)

TMD-PDFs give the number density of partons, with their intrinsic motion and spin, inside a fast moving proton, with its spin.

$$
\begin{array}{ccc}
\boldsymbol{S} \cdot\left(\boldsymbol{p} \times \boldsymbol{k}_{\perp}\right) & \boldsymbol{s}_{q} \cdot\left(\boldsymbol{p} \times \boldsymbol{k}_{\perp}\right) & \boldsymbol{S} \cdot \boldsymbol{s}_{q} \\
\text { "Sivers effect" } & \text { "Boer-Mulders effect" } &
\end{array}
$$

there are 8 independent TMD-PDFs

$f_{1}^{q}\left(x, \boldsymbol{k}^{2}\right) \quad$ unpolarized quarks in unpolarized protons unintegrated unpolarized distribution
$g_{1 L}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \quad$ correlate S_{\perp} of quark with $S_{\llcorner }$of proton unintegrated helicity distribution
$h_{1 T}^{q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \quad \begin{aligned} & \text { correlate ST of quark with } \mathrm{S}_{\text {T }} \text { of proton } \\ & \text { unintegrated transversity distribution }\end{aligned}$ only these survive in the collinear limit
$f_{1 T}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \quad$ correlate k_{\perp} of quark with $\mathrm{S}_{\text {T }}$ of proton (Sivers) $h_{1}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \quad$ correlate k_{\perp} and $s_{\text {t }}$ of quark (Boer-Mulders)

$$
g_{1 T}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \quad h_{1 L}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right) \quad h_{1 T}^{\perp q}\left(x, \boldsymbol{k}_{\perp}^{2}\right)
$$

different double-spin correlations

TMD-FFs give the number density of hadrons, with their momentum, originated in the fragmentation of a fast moving parton, with its spin.

$$
\boldsymbol{s}_{q} \cdot\left(\boldsymbol{p}_{q} \times \boldsymbol{p}_{\perp}\right) \quad \text { "Collins effect" }
$$

there are 2 independent TMD-FFs for spinless hadrons

$$
D_{1}^{q}\left(z, \boldsymbol{p}_{\perp}^{2}\right) \quad \begin{gathered}
\text { unpolarized hadrons in unpolarized quarks } \\
\text { unintegrated fragmentation function }
\end{gathered}
$$

$H_{1}^{\perp q}\left(z, \boldsymbol{p}_{\perp}^{2}\right)$ correlate p_{\perp} of hadron with $\mathrm{s}^{\text {T }}$ of quark (Collins)

how to "measure" TMDs?

needs processes which relate physical observables to parton intrinsic motion

$$
\begin{gathered}
\text { SIDIS } \\
\ell N \rightarrow \ell h X
\end{gathered}
$$

Drell-Yan processes

$$
p N \rightarrow \ell^{+} \ell^{-} X
$$

a similar diagram for $e^{+} e^{-} \rightarrow h_{1} h_{2} X$ and, possibly, for $p N \rightarrow h X$

TMDs in SIDIS

$$
\boldsymbol{P}_{T}=\boldsymbol{p}_{\perp}+z \boldsymbol{k}_{\perp}
$$

TMD factorization holds at large Q^{2}, and $P_{T} \approx k_{\perp} \approx \Lambda_{\text {ecD }}$ Two scales: $P_{T} \ll Q^{2}$

(Collins, Soper, Ji, J.P. Ma, Yuan, Qiu, Vogelsang, Collins, Metz...)

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \phi} & =F_{U U}+\cos (2 \phi) F_{U U}^{\cos (2 \phi)}+\frac{1}{Q} \cos \phi F_{U U}^{\cos \phi}+\lambda \frac{1}{Q} \sin \phi F_{L U}^{\sin \phi} \\
& +S_{L}\left\{\sin (2 \phi) F_{U L}^{\sin (2 \phi)}+\frac{1}{Q} \sin \phi F_{U L}^{\sin \phi}+\lambda\left[F_{L L}+\frac{1}{Q} \cos \phi F_{L L}^{\cos \phi}\right]\right\} \\
& +S_{T}\left\{\begin{array}{c}
\sin \left(\phi-\phi_{S}\right) F_{U T}^{\sin \left(\phi-\phi_{S}\right)}+\sin \left(\phi+\phi_{S}\right) F_{U T}^{\sin \left(\phi+\phi_{S}\right)}+\sin \left(3 \phi-\phi_{S}\right) F_{U T}^{\sin \left(3 \phi-\phi_{S}\right)} \\
\text { Sollinsers }
\end{array}\right. \\
& +\frac{1}{Q}\left[\sin \left(2 \phi-\phi_{S}\right) F_{U T}^{\sin \left(2 \phi-\phi_{S}\right)}+\sin \phi_{S} F_{U T}^{\sin \phi_{S}}\right] \\
& \left.+\lambda\left[\cos \left(\phi-\phi_{S}\right) F_{L T}^{\cos \left(\phi-\phi_{S}\right)}+\frac{1}{Q}\left(\cos \phi_{S} F_{L T}^{\cos \phi_{S}}+\cos \left(2 \phi-\phi_{S}\right) F_{L T}^{\cos \left(2 \phi-\phi_{S}\right)}\right)\right]\right\}
\end{aligned}
$$

the $F_{S_{B} S_{T}}^{(\cdots)}$ contain the TMDs; plenty

TMDs in Drell-Yan processes

COMPASS, RHIC, Fermilab, NICA, AFTER...

factorization holds, two scales, M^{2}, and $q_{T} \ll M$ $\mathrm{d} \sigma^{D-Y}=\sum_{a} f_{q}\left(x_{1}, \boldsymbol{k}_{\perp 1} ; Q^{2}\right) \otimes f_{\bar{q}}\left(x_{2}, \boldsymbol{k}_{\perp 2} ; Q^{2}\right) \mathrm{d} \hat{\sigma}^{q \bar{q} \rightarrow \ell^{+} \ell^{-}}$ direct product of TMDs, no fragmentation process

Case of one polarized nucleon only

$$
\begin{aligned}
\frac{\mathrm{d} \sigma}{\mathrm{~d}^{4} q \mathrm{~d} \Omega}= & \frac{\alpha^{2}}{\Phi q^{2}}\left\{\left(1+\cos ^{2} \theta\right) F_{U}^{1}+\left(1-\cos ^{2} \theta\right) F_{U}^{2}+\sin 2 \theta \cos \phi F_{U}^{\cos \phi}+\sin ^{2} \theta \cos 2 \phi F_{U}^{\cos 2 \phi}\right. \\
+ & S_{L}\left(\sin 2 \theta \sin \phi F_{L}^{\sin \phi}+\sin ^{2} \theta \sin 2 \phi F_{L}^{\sin 2 \phi}\right) \\
+ & S_{T}\left[\left(F_{T}^{\sin \phi_{S}}+\cos ^{2} \theta \tilde{F}_{T}^{\sin \phi_{S}}\right) \sin \phi_{S}+\sin 2 \theta\left(\sin \left(\phi+\phi_{S}\right) F_{T}^{\sin \left(\phi+\phi_{S}\right)}\right.\right. \\
& \left.\quad+\sin \left(\phi-\phi_{S}\right) F_{T}^{\sin \left(\phi-\phi_{S}\right)}\right) \\
& \quad \begin{array}{l}
\text { Sivers }
\end{array} \\
+ & \left.\left.\sin ^{2} \theta\left(\sin \left(2 \phi+\phi_{S}\right) F_{T}^{\sin \left(2 \phi+\phi_{S}\right)}+\sin \left(2 \phi-\phi_{S}\right) F_{T}^{\sin \left(2 \phi-\phi_{S}\right)}\right)\right]\right\}
\end{aligned}
$$

Collins-Soper frame

Unpolarized cross section already very interesting

$$
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}=\frac{3}{4 \pi} \frac{1}{\lambda+3}\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right)
$$

Collins-Soper frame
naive collinear parton model: $\lambda=1 \quad \mu=\nu=0$

Collins function from $e^{+} e^{-}$processes Belle, BaBar, BES-III

another similar asymmetry can be measured, Ao

Experimental results:

clear evidence for Sivers and Collins effects from SIDIS data (HERMES, COMPASS, JLab)

independent evidence for Collins effect

 from $e^{+} e^{-}$data at Belle, BaBar and BES-III$$
A_{12}\left(z_{1}, z_{2}\right) \sim \Delta^{N} D_{h_{1} / q^{\dagger}}\left(z_{1}\right) \otimes \Delta^{N} D_{h_{2} / \bar{q}^{\uparrow}}\left(z_{2}\right)
$$

I. Garzia, arXiv:1201.4678

a similar asymmetry just measured by BES-III (arXiv 1507:06824)

Collins effect clearly observed both in SIDIS and $e+e$ - processes, by several Collaborations

TMD extraction from data - first phase (simple parameterisation, no TMD evolution, limited number of parameters, ...) unpolarised TMDs - fit of SIDIS multiplicities (M.A, Boglione, Gonzalez, Melis, Prokudin, JHEP 1404 (2014) 005)

HERMES $M_{p}^{\pi^{+}}$

clear support for a gaussian distribution

$$
\begin{gathered}
\frac{d^{2} n^{h}\left(x_{B}, Q^{2}, z_{h}, P_{T}\right)}{d z_{h} d P_{T}^{2}}=\frac{1}{2 P_{T}} M_{n}^{h}\left(x_{B}, Q^{2}, z_{h}, P_{T}\right)=\frac{\pi \sum_{q} e_{q}^{2} f_{q / p}\left(x_{B}\right) D_{h / q}\left(z_{h}\right)}{\sum_{q} e_{q}^{2} f_{q / p}\left(x_{B}\right)} \frac{e^{-P_{T}^{2} /\left\langle P_{T}^{2}\right\rangle}}{\pi\left\langle P_{T}^{2}\right\rangle} \\
\left\langle P_{T}^{2}\right\rangle=\left\langle p_{\perp}^{2}\right\rangle+z_{h}^{2}\left\langle k_{\perp}^{2}\right\rangle \\
f_{q / p}\left(x, k_{\perp}\right)=f_{q / p}(x) \frac{e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle}}{\pi\left\langle k_{\perp}^{2}\right\rangle} \\
D_{h / q}\left(z, p_{\perp}\right)=D_{h / q}(z) \frac{e^{-p_{\perp}^{2} /\left\langle p_{\perp}^{2}\right\rangle}}{\pi\left\langle p_{\perp}^{2}\right\rangle} \\
\left\langle k_{\perp}^{2}\right\rangle=0.57 \quad\left\langle p_{\perp}^{2}\right\rangle=0.12
\end{gathered}
$$

a similar analysis performed by Signori, Bacchetta, Radici, Schnell, JHEP 1311 (2013) 194; it also assumes gaussian behaviour

TMD extraction: transversity and Collins functions - first phase M. A., M. Boglione, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin, PRD 87 (2013) 094019

$$
\begin{gathered}
\mathrm{x} \\
\Delta_{T} q\left(x, k_{\perp}\right)=\frac{1}{2} \mathcal{N}_{q}^{T}(x)\left[f_{q / p}(x)+\Delta q(x)\right] \frac{e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle_{T}}}{\pi\left\langle k_{\perp}^{2}\right\rangle_{T}} \\
\Delta^{N} D_{h / q^{\uparrow}}\left(z, p_{\perp}\right)=2 \mathcal{N}_{q}^{C}(z) D_{h / q}(z) h\left(p_{\perp}\right) \frac{e^{-p_{\perp}^{2} /\left\langle p_{\perp}^{2}\right\rangle}}{\pi\left\langle p_{\perp}^{2}\right\rangle}
\end{gathered}
$$

SIDIS and e+e-data, simple parameterization, no TMD evolution, agreement with extraction using di-hadron FF
(recent papers by Bacchetta, Courtoy, Guagnelli, Radici, JHEP 1505 (2015) 123; Kang, Prokudin, Sun, Yuan, Phys. Rev. D91 (2015) 071501; arXiv:1505.05589)
recent BaBar data on the p_{\perp} dependence of the Collins function (first direct measurement)

gaussian p_{\perp} dependence of Collins functions
(M.A., Boglione, D'Alesio, Gonzalez, Melis, Murgia, Prokudin, in preparation)
extraction of u and d Sivers functions - first phase M.A, M. Boglione, U. D'Alesio, S. Melis, F. Murgia, A. Prokudin (in agreement with several other groups)

$$
x \Delta^{N} f_{q}^{(1)}(x, Q)
$$

$$
\begin{aligned}
& \Delta^{N} f_{q}^{(1)}(x, Q) \\
= & \int d^{2} \boldsymbol{k}_{\perp} \frac{k_{\perp}}{4 M_{p}} \Delta^{N} \widehat{f_{q / p^{\top}}}\left(x, k_{\perp} ; Q\right) \\
= & -f_{1 T}^{\perp(1) q}(x, Q)
\end{aligned}
$$

parameterization of the Sivers function:

$$
\Delta^{N} \widehat{f}_{q / p^{\uparrow}}\left(x, k_{\perp} ; Q\right)=2 \mathcal{N}(x) h\left(k_{\perp}\right) f_{q}(x, Q) \frac{1}{\pi\left\langle k_{\perp}^{2}\right\rangle} e^{-k_{\perp}^{2} /\left\langle k_{\perp}^{2}\right\rangle}
$$

Q^{2} evolution only taken into account in the collinear part (usual PDF)

Sivers effects induces distortions in the parton distribution

$$
f_{q / p, \boldsymbol{S}^{(}}\left(x, \boldsymbol{k}_{\perp}\right)=f_{q / p}\left(x, k_{\perp}\right)+\frac{1}{2} \Delta^{N} f_{q / p^{\dagger}}\left(x, k_{\perp}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)
$$

$$
=f_{q / p}\left(x, k_{\perp}\right)-\frac{k_{\perp}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)
$$

similar information can be obtained from GPDs and their FT $q\left(x, \boldsymbol{b}_{T}\right)$

(a)

(b)

$$
x<0.1
$$

$$
x \sim 0.3
$$

$$
x \sim 0.8
$$

femtophotography or tomography of the nucleon
expected results at EIC - from DVCS to GPDs to spatial parton distributions EIC White Paper, arXiv:1212.1701

models of Sivers function and gauge links, process dependence

SIDIS final state interactions $\left(\Rightarrow A_{N}\right)$

D-Y initial state interactions $\left(\Rightarrow-A_{N}\right)$

Brodsky, Hwang, Schmidt, PL B530 (2002) 99; NP B642 (2002) 344 Brodsky, Hwang, Kovchegov, Schmidt, Sievert, PR D88 (2013) 014032
but the the Sivers effect has a simple physical picture...

$$
\begin{aligned}
f_{q / p, \boldsymbol{S}}\left(x, \boldsymbol{k}_{\perp}\right) & =f_{q / p}\left(x, k_{\perp}\right)+\frac{1}{2} \Delta^{N} f_{q / p^{\dagger}}\left(x, k_{\perp}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right) \\
& =f_{q / p}\left(x, k_{\perp}\right)-\frac{k_{\perp}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)
\end{aligned}
$$

left-right spin asymmetry for the process $\gamma^{*} q \rightarrow q$
the spin- \mathbf{k}_{\perp} correlation is an intrinsic property of the nucleon; it should be related to the parton orbital motion

First results from RHIC, $p^{\uparrow} p \rightarrow W^{ \pm} X$
STAR Collaboration, PRL 116 (2016) 132301

some hints at sign change of Sivers function..... (new results from COMPASS expected soon)

other experimental evidence of the Sivers and Collins effects

TMDs and QCD - TMD evolution

 study of the QCD evolution of TMDs and TMD factorisation in rapid developmentCollins-Soper-Sterman resummation - NP B250 (1985) 199
Idilbi, Ji, Ma, Yuan - PL B597, 299 (2004); PR D70 (2004) 074021
Ji, Ma, Yuan - PL B597 (2004) 299; PR. D71 (2005) 034005
Collins, "Foundations of perturbative QCD", Cambridge University Press (2011)
Aybat, Rogers, PR D83 (2011) 114042
Aybat, Collins, Qiu, Rogers, PR D85 (2012) 034043
Echevarria, Idilbi, Schafer, Scimemi, arXiv:1208.1281
Echevarria, Idilbi, Scimemi, JHEP 1207 (2012) 002
Aybat, Prokudin, Rogers, PRL 108 (2012) 242003
Anselmino, Boglione, Melis, PR D86 (2012) 014028
Aidala, Field, Gamberg, Rogers, PR D89 (2014) 094002
Echevarria, Idilbi, Kang, Vitev, PR D89 (2014) 074013
Bacchetta, Prokudin, NP B875 (2013) 536
Godbole, Misra, Mukherjee, Raswoot, PR D88 (2013) 014029
Boer, Lorcé, Pisano, Zhou, arXiv:1504.04332 (2015)
Boglione, Gonzalez, Melis, Prokudin, JHEP 1502 (2015) 095
Kang, Prokudin, Sun, Yuan, arXiv:1505.05589

+ many more authors...

Different TMD evolution schemes and different implementations within the same scheme. It needs non perturbative inputs
dedicated workshops, QCD Evolution 2011, 2012, 2013, 2014, 2015, 2016
see, "Transverse momentum dependent (TMD) parton distribution functions: status and prospects", arXiv: 1507.05267 (from
"Resummation, Evolution, Factorization", Antwerp 2014)

dedicated tools:

TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions Hautmann, Jung, Kramer, Mulders, Nocera, Rogers, Signori

TMD phenomenology - phase 2

 how does gluon emission affect the transverse motion? a few selected resultsTMD evolution of up quark Sivers function

Aybat, Collins, Qiu, Rogers, Phys. Rev. D85 (2012) 034043

TMD evolution of up quark Sivers function

Aybat, Collins, Qiu, Rogers, Phys.Rev. D85 (2012) 034043
TMD evolution of Sivers function studied also by Echevarria, Idilbi, Kang, Vitev, Phys. Rev. D89 (2014) 074013

first phenomenological applications to data

Aybat, Prokudin, Rogers, PRL 108 (2012) 242003

existing fits (red line, Torino) of HERMES data at $\left\langle Q^{2}\right\rangle=2.4 \mathrm{GeV}^{2}$, extrapolated with TMD evolution up to $\left\langle Q^{2}\right\rangle=3.8 \mathrm{GeV}^{2}$ and compared with COMPASS data (dashed line)
fit of SIDIS data with a specific TMD evolution M.A., M. Boglione, S. Melis, PR D86 (2012) 014028; arXiv:1204.1239

TMD evolution fits better the large Q^{2} data

Extraction of transversity and Collins functions with TMD evolution (Kang, Prokudin, Sun, Yuan, arXiv:1505.05589)

transversity distributions

moment of Collins functions

comparison with phase 1 extraction, $Q^{2}=2.4 \mathrm{GeV}^{2}$
(Kang, Prokudin, Sun, Yuan, arXiv:1505.05589)
comparison of tensor charges from different extractions and models, at $Q^{2}=10 \mathrm{GeV}^{2}$

$$
\delta q=\int_{0}^{1} d x\left[\Delta_{T} q(x)-\Delta_{T} \bar{q}(x)\right]
$$

extrapolation to small and large x

possible EIC kinematical coverage - SIDIS
Electron Ion Collider: The Next QCD Frontier - Understanding the glue that binds us all: e-Print: arXiv:1212.1701

possible EIC kinematical coverage - Deeply Virtual Compton Scattering

Conclusions

The 3D nucleon structure is mysterious and fascinating. Many experimental results show the necessity to go beyond the simple collinear partonic picture and give new information. Crucial task is interpreting data and building a consistent 3D description of the nucleon.

Sivers and Collins effects are well established, with many transverse spin asymmetries resulting from them. Sivers function, TMDs and orbital angular momentum? QCD analysis of TMDs and GPDs sound and well developed.

Combined data from SIDIS, Drell-Yan, e+e-, with theoretical modelling, should lead to a true 3D imaging of the proton

Waiting for JLab 12, new COMPASS results, and, crucially, for an EIC dedicated facility

