Ground state and dynamical properties of many-body systems by non conventional QMC algorithms

Alessandro Roggero

University of Washington \& Institute for Nuclear Theory

Adelchi Fabrocini's Day, Elba - 1 July, 2016

Outline \& Acknowledgements

1 Dynamical Response of Quantum many-body systems using Integral Transform techniques (and Monte Carlo)
2 Monte Carlo simulations for non-local χ-EFT interactions

Collaborators:

- Francesco Pederiva - UNITN $(1,2)$
- Giuseppina Orlandini - UNITN (1)
- Stefano Gandolfi and Joe Carlson - LANL (1)
- Abhishek Mukherjee - ECT* (2)

Dynamical Response of Quantum many-body systems using Integral Transform techniques

- Integral Transforms
- Dynamical Response Function
- Monte Carlo and Laplace transform
- A new transform
- Applications and perspectives

Integral Transform Techniques

An Integral Transform maps the original problem in a new domain where it's simpler to solve it

$$
T(y)=\int_{X} K(x, y) S(x) d x
$$

- Accessible object
- Object of interest

Integral Transform Techniques

An Integral Transform maps the original problem in a new domain where it's simpler to solve it

- Accessible object
- Object of interest

$$
\int_{T}^{T(y)}=\int_{X} K(x, y) S(x) d x
$$

The solution is then mapped back using the inverse transform.

PROBLEM

The inverse transform is a so-called III-Posed Problem!

Our object of interest: Dynamics of Quantum systems

$$
\begin{aligned}
\mathcal{R}(\omega) & \left.=\sum_{\nu}\left|\left\langle\Psi_{\nu}\right| \hat{O}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(\omega-\left(E_{\nu}-E_{0}\right)\right) \\
& =\left\langle\Psi_{0}\right| \hat{O}^{\dagger} \delta\left(\omega-\left(\hat{H}-E_{0}\right)\right) \hat{O}\left|\Psi_{0}\right\rangle
\end{aligned}
$$

Or considering an IT [Efros,Leidemann,Orlandini,Phys.Lett.B 338,130]:

$$
\Phi(\sigma)=\int K(\sigma, \omega) \mathcal{R}(\omega) d \omega
$$

Our object of interest: Dynamics of Quantum systems

$$
\begin{aligned}
\mathcal{R}(\omega) & \left.=\sum_{\nu}\left|\left\langle\Psi_{\nu}\right| \hat{O}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(\omega-\left(E_{\nu}-E_{0}\right)\right) \\
& =\left\langle\Psi_{0}\right| \hat{O}^{\dagger} \delta\left(\omega-\left(\hat{H}-E_{0}\right)\right) \hat{O}\left|\Psi_{0}\right\rangle
\end{aligned}
$$

Or considering an IT [Efros,Leidemann,Orlandini,Phys.Lett.B 338,130]:

$$
\Phi(\sigma)=\int K(\sigma, \omega) \mathcal{R}(\omega) d \omega
$$

A good kernel K should be one such that:

- the transform $\Phi(\sigma)$ is easy to calculate (in QMC)
- the inversion of the transform can be made stable

Integral kernels - Laplace

In QMC methods we routinely use the imaginary-time propagator

$$
e^{-\tau \hat{H}}|\phi\rangle=\sum_{n=0}^{\infty} e^{-\tau E_{n}}\left\langle\Psi_{n} \mid \phi\right\rangle\left|\Psi_{n}\right\rangle \xrightarrow{\tau \rightarrow \infty} e^{-\tau E_{0}}\left\langle\Psi_{0} \mid \phi\right\rangle\left|\Psi_{0}\right\rangle
$$

Integral kernels - Laplace

In QMC methods we routinely use the imaginary-time propagator

$$
e^{-\tau \hat{H}}|\phi\rangle=\sum_{n=0}^{\infty} e^{-\tau E_{n}}\left\langle\Psi_{n} \mid \phi\right\rangle\left|\Psi_{n}\right\rangle \xrightarrow{\tau \rightarrow \infty} e^{-\tau E_{0}}\left\langle\Psi_{0} \mid \phi\right\rangle\left|\Psi_{0}\right\rangle
$$

In this framework it is natural to consider the Laplace kernel:

$$
K(\sigma, \omega)=e^{-\sigma \omega}
$$

The transform becomes an imaginary-time correlation function:

$$
\Phi(\sigma)=\left\langle\Psi_{0}\right| \hat{O}^{\dagger} e^{-\sigma \hat{H}} \hat{O}\left|\Psi_{0}\right\rangle=\left\langle\Psi_{0}\right| \hat{O}^{\dagger}(0) \hat{O}(\sigma)\left|\Psi_{0}\right\rangle .
$$

Integral kernels - Laplace

$$
L(\sigma)=\int K(\sigma, \omega) R(\omega) d \omega=\int_{0}^{\infty} e^{-\sigma \omega} R(\omega) d \omega
$$

Integral kernels - Laplace

$$
L(\sigma)=\int K(\sigma, \omega) R(\omega) d \omega=\int_{0}^{\infty} e^{-\sigma \omega} R(\omega) d \omega
$$

- we have access only to a NOISY version of $L(\sigma)$

Integral kernels - Laplace

$$
L(\sigma)=\int K(\sigma, \omega) R(\omega) d \omega=\int_{0}^{\infty} e^{-\sigma \omega} R(\omega) d \omega
$$

- we have access only to a NOISY version of $L(\sigma)$

Integral kernels - Laplace

$$
L(\sigma)=\int K(\sigma, \omega) R(\omega) d \omega=\int_{0}^{\infty} e^{-\sigma \omega} R(\omega) d \omega
$$

- we have access only to a NOISY version of $L(\sigma)$

Integral kernels - Laplace

$$
L(\sigma)=\int K(\sigma, \omega) R(\omega) d \omega=\int_{0}^{\infty} e^{-\sigma \omega} R(\omega) d \omega
$$

- we have access only to a NOISY version of $L(\sigma)$

Integral kernels - Laplace

$$
L(\sigma)=\int K(\sigma, \omega) R(\omega) d \omega=\int_{0}^{\infty} e^{-\sigma \omega} R(\omega) d \omega
$$

- we have access only to a NOISY version of $L(\sigma)$

Integral kernels - Laplace

$$
L(\sigma)=\int K(\sigma, \omega) R(\omega) d \omega=\int_{0}^{\infty} e^{-\sigma \omega} R(\omega) d \omega
$$

- we have access only to a NOISY version of $L(\sigma)$

Integral kernels - Gaussian

$$
G(\sigma, \beta)=\int K(\sigma, \omega, \beta) R(\omega) d \omega=\int_{0}^{\infty} e^{-\frac{(\sigma-\omega)^{2}}{2 \beta}} R(\omega) d \omega
$$

- We have now one more parameter: β.

Integral kernels - Gaussian

$$
G(\sigma, \beta)=\int K(\sigma, \omega, \beta) R(\omega) d \omega=\int_{0}^{\infty} e^{-\frac{(\sigma-\omega)^{2}}{2 \beta}} R(\omega) d \omega
$$

- We have now one more parameter: β.

The transform $G(\sigma)$ is a smoothened version of the original signal!

Integral kernels - Gaussian

$$
G(\sigma, \beta)=\int K(\sigma, \omega, \beta) R(\omega) d \omega=\int_{0}^{\infty} e^{-\frac{(\sigma-\omega)^{2}}{2 \beta}} R(\omega) d \omega
$$

- We have now one more parameter: β.

The transform $G(\sigma)$ is a smoothened version of the original signal!

Integral kernels - Gaussian

$$
G(\sigma, \beta)=\int K(\sigma, \omega, \beta) R(\omega) d \omega=\int_{0}^{\infty} e^{-\frac{(\sigma-\omega)^{2}}{2 \beta}} R(\omega) d \omega
$$

- We have now one more parameter: β.

The transform $G(\sigma)$ is a smoothened version of the original signal!

Integral kernels - Gaussian

$$
G(\sigma, \beta)=\int K(\sigma, \omega, \beta) R(\omega) d \omega=\int_{0}^{\infty} e^{-\frac{(\sigma-\omega)^{2}}{2 \beta}} R(\omega) d \omega
$$

- We have now one more darameter: β.
- we can't use Gaussian (or Lorentzian) in QMC

The transform $G(\sigma)$ is a smoothened version of the original signal!

Integral kernels - Gaussian

$$
G(\sigma, \beta)=\int K(\sigma, \omega, \beta) R(\omega) d \omega=\int_{0}^{\infty} e^{-\frac{(\sigma-\omega)^{2}}{2 \beta}} R(\omega) d \omega
$$

- We have now one more narameter: β.
- we can't use Gaussian (or Lorentzian) in QMC

- but we have found a viable kernel

The transform $G(\sigma)$ is a smoothened version of the original signal!

Integral Kernels - Laplace-like

We now want to build an integral kernel which can be calculated in QMC methods and that has the desired "bell-shaped" form.

$$
K(\sigma, \omega, N)=\frac{1}{\sigma}\left(e^{-\ln (2) \frac{\omega}{\sigma}}-e^{-2 \ln (2) \frac{\omega}{\sigma}}\right)^{N}=\frac{1}{\sigma} \sum_{k=0}^{N}\binom{N}{k}(-)^{k} e^{-\ln (2)(N+k) \frac{\omega}{\sigma}}
$$

As $N \rightarrow \infty$ the kernel width becomes smaller and smaller

Recap of the idea

- take Laplace transform:

$$
L(\tau)=\int K_{L}(\omega, \tau) R(\omega) d \omega
$$

- build the new transform:

$$
\begin{aligned}
\Phi(\sigma, N) & =\sum_{j}^{N} c_{j, N} L\left(\frac{a_{j, N}}{\tau}\right) \\
& =\int K_{\text {new }}(\omega, \sigma, N) R(\omega) d \omega
\end{aligned}
$$

- invert the final transform:

$$
\begin{aligned}
R(\omega) & =\int K_{\text {new }}^{-1}(\omega, \sigma, N) \Phi(\sigma, N) d \sigma \\
& =\int K_{L}^{-1}(\omega, \tau) L(\tau) d \tau
\end{aligned}
$$

Density response of superfluid He^{4}

[A. R., F. Pederiva and G. Orlandini, PRB 88,094302 (2013)]

Density response of superfluid He^{4}

[A. R., F. Pederiva and G. Orlandini, PRB 88,094302 (2013)]

Conclusions

Pro

- may control stability of the inversion by tuning kernel function
- we need just imaginary-time correlation functions

Con

- for high accuracy, extremely long imaginary-time intervals have to be considered (computationally heavy)
- the inversion procedure can still introduce uncontrollable errors \longrightarrow try with different Kernels (e.g. Gaussian [see next part]) \longrightarrow check different inversion schemes (e.g. GIFT [E.Vitali et al.])

Future perspectives

Inversion of the IT remains an III-Posed problem, can we avoid it?
ground-state $\mathrm{MC}: \quad e^{-\tau \hat{H}}\left|\Phi_{0}\right\rangle \xrightarrow{\tau \rightarrow \infty} c_{0}\left|\Psi_{0}\right\rangle$
excited-state MC: $e^{-\tau\left(\hat{H}-E_{k}\right)^{2}}\left|\Phi_{0}\right\rangle \quad \xrightarrow{\tau \rightarrow \infty} \sum_{i} \delta\left(E_{i}-E_{k}\right) c_{i}\left|\Psi_{i}\right\rangle \propto\left|\Psi_{k}\right\rangle$

$$
K\left(E_{k}, \hat{H}, N\right)\left|\Phi_{0}\right\rangle \xrightarrow{N \rightarrow \infty} \sum_{i}^{\prime} \delta\left(E_{i}-E_{k}\right) \tilde{c}_{i}\left|\Psi_{i}\right\rangle \propto\left|\Psi_{k}\right\rangle
$$

Expand gaussian for $\tau \rightarrow 0$:
$e^{-\tau\left(\hat{H}-E_{k}\right)^{2}} \approx \mathbf{1}-\tau\left(\hat{H}-E_{k}\right)^{2}$
Booth \& Chan, J.C.P. 137,191102 (2012)

Monte Carlo simulations for χ-EFT interactions

- Chiral-EFT interactions
- Dealing with non-localities with QMC
- Applications to neutron matter

Chiral Effective Field Theory (χ-EFT) interactions

- pions interact weakly at small energies (Goldstone bosons) low-scales Q, m_{π} high-scales $m_{\rho}, \Lambda_{\chi}=m_{\Delta}-m_{N}$
- expand the interaction in powers of $Q / \Lambda_{\chi}, m_{\pi} / \Lambda_{\chi}$ 2N Force $3 N$ Force
- short range contact-interaction + pions
- many-body forces treated in a systematic way

Lo
$\left(Q / \Lambda_{\chi}\right)^{0}$

NLO
$\left(Q / \Lambda_{\chi}\right)^{2}$

NNLO
$\left(Q / \Lambda_{\chi}\right)^{3}$

R. Machleidt, D. R. Entem, Phys.Rept 503,1 (2011)

Chiral Effective Field Theory (χ-EFT) interactions

- pions interact weakly at small energies (Goldstone bosons) low-scales Q, m_{π} high-scales $m_{\rho}, \Lambda_{\chi}=m_{\Delta}-m_{N}$
- expand the interaction in powers of $Q / \Lambda_{\chi}, m_{\pi} / \Lambda_{\chi}$

2N Force $3 N$ Force

NNLO
$\left(Q / \Lambda_{\chi}\right)^{3}$

- short range contact-interaction + pions
- many-body forces treated in a systematic way
- non-local in coordinate-space (\geq NLO)

$$
V(x, y) \neq V(x) \delta(x-y)
$$

Locality is needed for conventional QMC

Gezerlis et al., PRL 111, 032501 (2013)
R. Machleidt, D. R. Entem, Phys.Rept 503,1 (2011)

Monte Carlo methods

Use a projection operator to filter the ground-state

$$
\begin{aligned}
& \left.P[\hat{H}]\left|\Psi_{n}\right\rangle=\left|\Psi_{n+1}\right\rangle \quad\left|\quad \lim _{n \rightarrow \infty} P[\hat{H}]^{n}\right| \Phi_{T}\right\rangle=|0\rangle \\
& \text { eg. } \quad P_{a}[\hat{H}]=1-\Delta \tau \hat{H} \quad \text { or } \quad P_{b}[\hat{H}]=e^{-\Delta \tau \hat{H}}
\end{aligned}
$$

the projection is performed stochastically.

Monte Carlo methods

Use a projection operator to filter the ground-state

$$
\begin{aligned}
& \left.P[\hat{H}]\left|\Psi_{n}\right\rangle=\left|\Psi_{n+1}\right\rangle \quad\left|\quad \lim _{n \rightarrow \infty} P[\hat{H}]^{n}\right| \Phi_{T}\right\rangle=|0\rangle \\
& \text { eg. } \quad P_{a}[\hat{H}]=1-\Delta \tau \hat{H} \quad \text { or } \quad P_{b}[\hat{H}]=e^{-\Delta \tau \hat{H}}
\end{aligned}
$$

the projection is performed stochastically.

The Standard Way

- work in coordinate-space
- for local interactions the projector factors in

$$
\begin{aligned}
\langle Y| e^{-\Delta \tau \hat{H}}|X\rangle & =\langle Y| e^{-\Delta \tau \hat{T}}|X\rangle e^{-\Delta \tau V(X)}+O\left(\Delta \tau^{2}\right) \\
& \approx G_{0}(Y, X) B(X)
\end{aligned}
$$

Monte Carlo methods

Use a projection operator to filter the ground-state

$$
\begin{aligned}
& \left.P[\hat{H}]\left|\Psi_{n}\right\rangle=\left|\Psi_{n+1}\right\rangle \quad\left|\quad \lim _{n \rightarrow \infty} P[\hat{H}]^{n}\right| \Phi_{T}\right\rangle=|0\rangle \\
& \text { eg. } \quad P_{a}[\hat{H}]=1-\Delta \tau \hat{H} \quad \text { or } \quad P_{b}[\hat{H}]=e^{-\Delta \tau \hat{H}}
\end{aligned}
$$

the projection is performed stochastically.

The Standard Way

- work in coordinate-space
- for local interactions the projector factors in

$$
\begin{aligned}
\langle Y| e^{-\Delta \tau \hat{H}}|X\rangle & =\langle Y| e^{-\Delta \tau \hat{T}}|X\rangle e^{-\Delta \tau V(X)}+O\left(\Delta \tau^{2}\right) \\
& \approx G_{0}(Y, X) \quad B(X)
\end{aligned}
$$

Monte Carlo methods

Use a projection operator to filter the ground－state
the projection

The Standar

－work in c
－for local

$$
P\left[\hat{H}\left|\left|\Psi_{n}\right\rangle=\right| \Psi_{n+1}\right\rangle \quad\left|\quad \operatorname { l i m } P \left[\left.\hat{H}\right|^{n}\left|\Phi_{T}\right\rangle=|0\rangle\right.\right.
$$

S．Pieper，R．Wiringa et．al（ANL）

－u！．，・ノ ー・・ノ

Monte Carlo methods

Use a projection operator to filter the ground-state

$$
\begin{aligned}
& \left.P[\hat{H}]\left|\Psi_{n}\right\rangle=\left|\Psi_{n+1}\right\rangle \quad\left|\quad \lim _{n \rightarrow \infty} P[\hat{H}]^{n}\right| \Phi_{T}\right\rangle=|0\rangle \\
& \text { eg. } \quad P_{a}[\hat{H}]=1-\Delta \tau \hat{H} \quad \text { or } \quad P_{b}[\hat{H}]=e^{-\Delta \tau \hat{H}}
\end{aligned}
$$

the projection is performed stochastically.

The Standard Way

- work in coordinate-space
- for non-local interactions the projector doesn't factor

$$
\begin{aligned}
\langle Y| e^{-\Delta \tau \hat{H}}|X\rangle & =\int d Z\langle Y| e^{-\Delta \tau \hat{T}}|Z\rangle\langle Z| e^{-\Delta \tau \hat{V}}|X\rangle+O\left(\Delta \tau^{2}\right) \\
& \approx \int d Z G_{0}(Y, Z) G_{V}(Z, X)
\end{aligned}
$$

Finite basis version

$$
\hat{H}=\sum_{a}^{\Omega} \epsilon_{a} \hat{a}_{a}^{\dagger} \hat{a}_{a}+\frac{1}{2} \sum_{i j k l}^{\Omega} V_{i j k l} \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{k} \hat{a}_{l}+\ldots
$$

- Direct Diagonalization possible only for small systems
- A general $V_{i j k l}$ leads to non-local interactions

Finite basis version

$$
\hat{H}=\sum_{a}^{\Omega} \epsilon_{a} \hat{a}_{a}^{\dagger} \hat{a}_{a}+\frac{1}{2} \sum_{i j k l}^{\Omega} V_{i j k l} \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{k} \hat{a}_{l}+\ldots
$$

- Direct Diagonalization possible only for small systems
- A general $V_{i j k l}$ leads to non-local interactions

The Finite Basis Way

- work in occupation number basis: $|\mathbf{n}\rangle=|\ldots 01100010 \ldots\rangle$
- for any interaction the projector can be written as

$$
\langle\mathbf{m}| \hat{P}|\mathbf{n}\rangle=\left(\frac{\langle\mathbf{m}| \hat{P}|\mathbf{n}\rangle}{\sum_{\mathbf{m}}\langle\mathbf{m}| \hat{P}|\mathbf{n}\rangle}\right)\left(\sum_{\mathbf{m}}\langle\mathbf{m}| \hat{P}|\mathbf{n}\rangle\right)=p(\mathbf{m}, \mathbf{n}) w(\mathbf{n})
$$

Finite basis version

$$
\hat{H}=\sum_{a}^{\Omega} \epsilon_{a} \hat{a}_{a}^{\dagger} \hat{a}_{a}+\frac{1}{2} \sum_{i j k l}^{\Omega} V_{i j k l} \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{k} \hat{a}_{l}+\ldots
$$

- Direct Diagonalization possible only for small systems
- A general $V_{i j k l}$ leads to non-local interactions

The Finite Basis Way

- work in occupation number basis: $|\mathbf{n}\rangle=|\ldots 01100010 \ldots\rangle$
- for any interaction the projector can be written as

$$
\langle\mathbf{m}| \hat{P}|\mathbf{n}\rangle=\left(\frac{\langle\mathbf{m}| \hat{P}|\mathbf{n}\rangle}{\sum_{\mathbf{m}}\langle\mathbf{m}| \hat{P}|\mathbf{n}\rangle}\right)\left(\sum_{\mathbf{m}}\langle\mathbf{m}| \hat{P}|\mathbf{n}\rangle\right)=p(\mathbf{m}, \mathbf{n}) w(\mathbf{n})
$$

Finite basis version

$$
\hat{H}=\sum_{a}^{\Omega} \epsilon_{a} \hat{a}_{a}^{\dagger} \hat{a}_{a}+\frac{1}{2} \sum_{i j k l}^{\Omega} V_{i j k l} \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{k} \hat{a}_{l}+\ldots
$$

- Direct Diagonalization possible only for small systems
- A general $V_{i j k l}$ leads to non-local interactions

The Finite Basis Way

- work in occupation number basis: $|\mathbf{n}\rangle=|\ldots 01100010 \ldots\rangle$
- for any interaction the projector can be written as

$$
\langle\mathbf{m}| \hat{P}|\mathbf{n}\rangle=\left(\frac{\langle\mathbf{m}| \hat{P}|\mathbf{n}\rangle}{\sum_{\mathbf{m}}\langle\mathbf{m}| \hat{P}|\mathbf{n}\rangle}\right)\left(\sum_{\mathbf{m}}\langle\mathbf{m}| \hat{P}|\mathbf{n}\rangle\right)=p(\mathbf{m}, \mathbf{n}) w(\mathbf{n})
$$

- We can use Coupled-Cluster theory to circumvent the sign-problem

Single-particle basis for bulk systems

- single-particle space $\mathcal{S}=\left\{\right.$ plane waves $\left.\mid k^{2}<=k_{\max }^{2}\right\} \otimes\{S, I\}$

Single-particle basis for bulk systems

- single-particle space $\mathcal{S}=\left\{\right.$ plane waves $\left.\mid k^{2}<=k_{\max }^{2}\right\} \otimes\{S, I\}$ Coulomb gas \longrightarrow good agreement with R-space QMC calculations [A. R., A. Mukherjee and F. Pederiva, PRB 88,115138 (2013)]

Neutron Matter with χ-EFT interactions at N2LO

Equation of State

[A. R., A. Mukherjee and F. Pederiva, PRL 112, 221103 (2014)]

Neutron Matter with χ-EFT interactions at N2LO

Nucleon chemical potential

[A. R., A. Mukherjee and F. Pederiva, PRL 112, 221103 (2014)]

Conclusions

Summary:

- we have developed a MC method that works for general interactions providing rigourus upper-bounds on energy
- the use of Coupled Cluster Wave-functions serves a dual pourpose:
- extremely good guiding wave-function
- provides variational energies for CC solutions

Current \& Future work:

- extension to finite systems
- solving sign-problem with cancellation (à la FCI-QMC)
- response functions (Gaussian may be viable)

Conclusions

Summary:

- we have developed a MC method that works for general interactions providing rigourus upper-bounds on energy
- the use of Coupled Cluster Wave-functions serves a dual pourpose:
- extremely good guiding wave-function
- provides variational energies for CC solutions

Current \& Future work:

- extension to finite systems
- solving sign-problem with cancellation (à la FCI-QMC)
- response functions (Gaussian may be viable)

Thanks for your attention

Wave-functions for Importance Sampling

A very accurate way to account for correlations in a generic Fock-space is the Coupled Cluster ansatz:

$$
\left|\Psi_{T}\right\rangle=e^{-\hat{T}}\left|\Phi_{H F}\right\rangle \quad \text { with } \quad \hat{T}=\hat{T}_{1}+\hat{T}_{2}+\ldots
$$

Here we will restrict to CCD case: $\hat{T}=\hat{T}_{2}=\frac{1}{2} \sum_{i j, a b} t_{i j}^{a b} \hat{a}_{a}^{\dagger} \hat{a}_{b}^{\dagger} \hat{a}_{j} \hat{a}_{i}$.
Is the CCD wave-function even quick to evaluate in SD space?
We need to calculate

$$
\Phi_{\mathrm{CCD}}^{m}\binom{p_{1} p_{2} \cdots p_{m}}{h_{1} h_{2} \cdots h_{m}}=\Phi_{\mathrm{CCD}}(\mathbf{n}) \quad \text { for } \quad|\mathbf{n}\rangle=a_{p_{1}}^{\dagger} \ldots a_{p_{m}}^{\dagger} a_{h_{1}} \ldots a_{h_{m}}\left|\Phi_{\mathrm{HF}}\right\rangle
$$

It turns out that one can write a recursive formula ([arXiv:1304.1549])

$$
\Phi_{\mathrm{CCD}}^{m}(\cdots)=\sum_{\gamma=2}^{m} \sum_{\mu<\nu}^{m}(-)^{\gamma+\mu+\nu} t_{h_{1} h_{\gamma}}^{p_{\mu} p_{\nu}} \Phi_{\mathrm{CCD}}^{m-2}(\cdots)
$$

Singular Value Decomposition (SVD)

We can make a discretization of the Integral transform

$$
\begin{gathered}
g(x)=\int_{a}^{b} K(x, y) f(y) d y \quad \longrightarrow \quad g_{i}=\sum_{k}^{N} \alpha_{k} K_{i k} f_{k} \quad i \in[1, N] \\
g_{i} \equiv g\left(x_{i}\right) \quad K_{i k} \equiv K\left(x_{i}, y_{k}\right) \quad f_{k} \equiv f\left(y_{k}\right)
\end{gathered}
$$

The SVD of the matrix K is a factorization of the form

$$
K=U \Sigma V^{T} \quad \text { with } \quad U, V, \Sigma \in \mathbb{R}^{N \times N}
$$

with U, V orthogonal and $\Sigma=\operatorname{diag}\left[\sigma_{1}, \ldots, \sigma_{N}\right]$.
The columns \bar{u}_{j} of U and \bar{v}_{j} of V can be regarded as orthonormal basis vectors of \mathbb{R}^{N} and the following holds

$$
K \bar{v}_{j}=\sigma_{j} \bar{u}_{j} \quad K^{T} \bar{u}_{j}=\sigma_{j} \bar{v}_{j}
$$

Singular Value Decomposition (SVD) II

In terms of the SVD of the matrix K the direct and inverse problems can be rewritten as

$$
\bar{g}=K \bar{f}=\sum_{j}^{N} \sigma_{j}\left(\bar{v}_{j}^{T} \bar{f}\right) \bar{u}_{j} \quad \bar{f}=K^{-1} \bar{g}=\sum_{j}^{N} \frac{\bar{u}_{j}^{T} \bar{g}}{\sigma_{j}} \bar{v}_{j}
$$

Singular Value Decomposition (SVD) II

In terms of the SVD of the matrix K the direct and inverse problems can be rewritten as

$$
\bar{g}=K \bar{f}=\sum_{j}^{N} \sigma_{j}\left(\bar{v}_{j}^{T} \bar{f}\right) \bar{u}_{j} \quad \bar{f}=K^{-1} \bar{g}=\sum_{j}^{N} \frac{\bar{u}_{j}^{T} \bar{g}_{g}}{\sigma_{j}} \bar{v}_{j}
$$

If the matrix K is the result of discretization of a Fredholm Integral equation of the 1st kind the following basic properties holds

- the singular values σ_{i} decay fast towards zero
- the singular vectors \bar{u}_{i}, \bar{v}_{i} have increasing frequencies

We can use the decay rate of singular values to define a sort of degree of ill - posedness

Singular Value Spectrum

Regularization techniques

The idea is to approximate our original ill-posed problem with a well-posed one, constraining the solution with known features.

In most approaches we have minimization problems of the form

$$
\min _{\bar{f}} D[K \bar{f}, \bar{g}]+\alpha L[\bar{f}]
$$

where

- D is a likelihood function (eg. Chi-squared, euclidean norm)
- L is a penalty functional that enforces eg. smoothness
- α is the regularization parameter

Regularization techniques: some examples

Regularized Least Squared (Tikhonov)

$$
\min _{\bar{f}}\|K \bar{f}-\bar{g}\|^{2}+\alpha\|\Gamma \bar{f}\|^{2}
$$

where the Tikhonov matrix Γ can be the identity $/$ or a discrete version of a derivative operator D_{1}, D_{2}.

Regularization techniques: some examples

Regularized Least Squared (Tikhonov)

$$
\min _{\bar{f}}\|K \bar{f}-\bar{g}\|^{2}+\alpha\|\Gamma \bar{f}\|^{2}
$$

where the Tikhonov matrix Γ can be the identity $/$ or a discrete version of a derivative operator D_{1}, D_{2}.

Cross-Entropy Minimization

$$
\min _{\bar{f}} K L[K \bar{f}, \bar{g}]+\alpha K L\left[\bar{f}, \bar{f}_{0}\right]
$$

where KL is the Kullback-Leibler distance

$$
K L[\bar{a}, \bar{b}]=\sum_{n} a_{n} \log \left(a_{n} / b_{n}\right)+b_{n}-a_{n}
$$

and \bar{f}_{0} is some prior estimate of \bar{f} (usually a positive constant)

Density response of He4

Density response of Unitary Fermi Gas

in collaboration with S.Gandolfi and J. Carlson(LANL) PRELIMINARY RESULTS

Neutron Matter with χ-EFT interactions at N2LO

Equation of State

Neutron Matter with χ-EFT interactions at N2LO

Momentum distribution

Constraining Nuclear Energy Density Functionals

Energy density functional for uniform matter:

$$
\mathcal{E}=\mathcal{E}_{\mathrm{kin}}+\sum_{t=0,1}\left(C_{t}^{\rho} \rho_{t}^{2}+C_{t}^{\tau} \rho_{t} \tau_{t}+C_{t}^{s} s_{t}^{2}+C_{t}^{T} s_{t} T_{t}\right)
$$

- contributions from both time-even and time-odd components.
- time-even part constrained eg. by even-even nuclei
- no effective way to constrain time-odd part

Constraining Nuclear Energy Density Functionals

Energy density functional for uniform matter:

$$
\mathcal{E}=\mathcal{E}_{\text {kin }}+\sum_{t=0,1}\left(C_{t}^{\rho} \rho_{t}^{2}+C_{t}^{\tau} \rho_{t} \tau_{t}+C_{t}^{s} s_{t}^{2}+C_{t}^{T} s_{t} T_{t}\right)
$$

- contributions from both time-even and time-odd components.
- time-even part constrained eg. by even-even nuclei
- no effective way to constrain time-odd part

Idea: [M. M. Forbes et al. PRC 89, 041301(R) (2014)]
Calculate binding energy of an impurity in polarized neutron matter

$$
\varepsilon_{\tau \sigma}=\left.\frac{\partial \mathcal{E}}{\partial \rho_{\tau \sigma}}\right|_{\rho_{\tau \sigma} \rightarrow 0} \quad \rightarrow \quad \text { eg } \quad \varepsilon_{n \downarrow} \propto\left(C_{0}^{s}+C_{1}^{s}\right),\left(C_{0}^{T}+C_{1}^{T}\right)
$$

The neutron polaron

Green pts from: M. M. Forbes et al. PRC 89, 041301(R) (2014)

The proton polarons I

The proton polarons II

$$
\frac{\varepsilon_{p \uparrow}-\varepsilon_{p \downarrow}}{E_{F}}=\frac{4 m\left(C_{0}^{s}-C_{1}^{s}\right)}{3 \pi^{2} \hbar^{2}} k_{F}-\frac{2 m\left(C_{0}^{T}-C_{1}^{T}\right)}{5 \pi^{2} \hbar^{2}} k_{F}^{3} .
$$

The proton polarons II

$$
\frac{\varepsilon_{p \uparrow}-\varepsilon_{p \downarrow}}{E_{F}}=\frac{4 m\left(C_{0}^{s}-C_{1}^{s}\right)}{3 \pi^{2} \hbar^{2}} k_{F}-\frac{2 m\left(C_{0}^{T}-C_{1}^{T}\right)}{5 \pi^{2} \hbar^{2}} k_{F}^{3}
$$

Symmetric Nuclear Matter - finite size effects

Neutron matter with QMC \& χ-EFT NN interactions

NNLO ${ }_{\text {opt }}$ Ekström et al. (2013) N3LO 500* Entem \& Machleidt (2003) N3LO 414-450 Coraggio et al. (2007)

CIMC NNLO ${ }_{\text {opt }}$ - A.R, A. Mukherjee \& F. Pederiva PRL (2014) CIMC N3LO - A.R, E. Rrapaj, S. Reddy \& J. W. Holt - in preparation

Convergence of MBPT in neutron matter

$$
\Delta E \equiv \frac{E_{X}-E_{\text {CIMC }}}{E_{\text {CIMC }}}
$$

A.R, E. Rrapaj, S. Reddy \& J. W. Holt - in preparation

Convergence of MBPT in neutron matter

$$
\Delta E \equiv \frac{E_{x}-E_{\text {CIMC }}}{E_{\text {CIMC }}}
$$

A.R, E. Rrapaj, S. Reddy \& J. W. Holt - in preparation

Nuclear matter with QMC \& χ-EFT NN interactions

Convergence of MBPT in nuclear matter

A.R, E. Rrapaj, S. Reddy \& J. W. Holt - in preparation

