Exotic and excited-state meson spectroscopy from lattice QCD

Christopher Thomas, Jefferson Lab

thomasc@jlab.org

Electron-Nucleus Scattering XI, Elba, June 2010

Outline

- Introduction and motivation
- Spectra from LQCD - overview of method
- Isovector and kaon spectra
- Multi-meson states
- Photocouplings
- Summary and outlook

Motivation

Renaissance in excited charmonium spectroscopy
BABAR, Belle, BES, CLEO-c
Upcoming experimental efforts, also in the light meson sector
GlueX (JLab), BESIII, PANDA

Motivation

Renaissance in excited charmonium spectroscopy
BABAR, Belle, BES, CLEO-c
Upcoming experimental efforts, also in the light meson sector
GlueX (JLab), BESIII, PANDA

Exotics $\left(\mathrm{J}^{\mathrm{PC}}=1^{-+}, 2^{+-}, \ldots\right)$? \quad can't just be a $q \bar{q}$ pair

e.g. hybrids, multi-mesons

Two spin-half fermions:
Parity:

$$
P=(-1)^{(L+1)}
$$

Charge Conj Sym: $\quad C=(-1)^{(L+S)}$

$$
\mathrm{JPC}=0^{-+}, 0^{++}, 1^{--}, 1^{++}, 1^{+-}, 2^{--}, 2^{++}, 2^{-+}, \ldots
$$

Motivation

Renaissance in excited charmonium spectroscopy
BABAR, Belle, BES, CLEO-c
Upcoming experimental efforts, also in the light meson sector
GlueX (JLab), BESIII, PANDA

Exotics (JPC $\left.=1^{-+}, \mathbf{2}^{+-}, \ldots\right)$? \quad can't just be a $q \bar{q}$ pair
 e.g. hybrids, multi-mesons

Photoproduction at GlueX (JLab 12 GeV upgrade)

Motivation

Renaissance in excited charmonium spectroscopy
BABAR, Belle, BES, CLEO-c
Upcoming experimental efforts, also in the light meson sector
GlueX (JLab), BESIII, PANDA

Exotics $\left(J^{\mathrm{PC}}=1^{-+}, 2^{+-}, \ldots\right)$? \quad can't just be a $q \bar{q}$ pair
 e.g. hybrids, multi-mesons
 Photoproduction at GlueX (JLab 12 GeV upgrade)

Use Lattice QCD to extract excited spectrum...
... and photocouplings (tested in charmonium)

QCD on a Lattice

Discretise on a grid (spacing = a) - regulator

Finite volume \rightarrow finite no. of d.o.f.

QCD on a Lattice

Discretise on a grid (spacing = a) - regulator

Finite volume \rightarrow finite no. of d.o.f.
Quarks fields on lattice sites $\quad \psi(x) \rightarrow \psi_{x}$
Gauge fields on links $A_{\mu}(x) \rightarrow U_{x, \mu}=e^{-a A_{x, \mu}}$

QCD on a Lattice

Discretise on a grid (spacing = a) - regulator

Finite volume \rightarrow finite no. of d.o.f.

Gauge fields on links $\quad A_{\mu}(x) \rightarrow U_{x, \mu}=e^{-a A_{x, \mu}}$

Path integral formulation
$\int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} U f(\psi, \bar{\psi}, U) e^{i S[\psi, \bar{\psi}, U]}$

QCD on a Lattice

Discretise on a grid (spacing = a) - regulator

Finite volume \rightarrow finite no. of d.o.f.

Quarks fields on lattice sites

$$
\psi(x) \rightarrow \psi_{x}
$$

Gauge fields on links $A_{\mu}(x) \rightarrow U_{x, \mu}=e^{-a A_{x, \mu}}$

Path integral formulation

Euclidean time: $\mathrm{t} \rightarrow \mathrm{i} \mathrm{t}$

$$
\int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} U f(\psi, \bar{\psi}, U) e^{i S[[\psi, \bar{\psi}, U]}
$$

$$
\int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} U f(\psi, \bar{\psi}, U) e^{-\tilde{S}[\psi, \bar{\psi}, U]}
$$

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z's) from correlation functions of meson interpolating fields

$$
C_{i j}(t)=<0\left|O_{i}(t) O_{j}(0)\right| 0>
$$

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z's) from correlation functions of meson interpolating fields

$$
C_{i j}(t)=<0\left|O_{i}(t) O_{j}(0)\right| 0>
$$

Construct operators which only overlap on to one spin

$$
O(t)=\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \bar{\psi}(x) \Gamma_{i} \overleftrightarrow{D}_{j} \overleftrightarrow{D}_{k} \ldots \psi(x)
$$ in the continuum limit

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z's) from correlation functions of meson interpolating fields

$$
C_{i j}(t)=<0\left|O_{i}(t) O_{j}(0)\right| 0>
$$

Construct operators which only overlap on to one spin

$$
O(t)=\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \bar{\psi}(x) \Gamma_{i} \overleftrightarrow{D}_{j} \overleftrightarrow{D}_{k} \ldots \psi(x)
$$ in the continuum limit

'Distillation' technology for constructing $\quad(p=0)$ definite JPC on lattice PR D80 054506 (2009)

$$
Z_{i}^{(n)} \equiv<0\left|O_{i}\right| n>
$$

$$
C_{i j}(t)=\sum_{n} \frac{e^{-E_{n} t}}{2 E_{n}}<0\left|O_{i}(0)\right| n><n\left|O_{j}(0)\right| 0>
$$

Variational Method

Large basis of operators \rightarrow matrix of correlators

$$
C_{i j}(t)=<0\left|O_{i}(t) O_{j}(0)\right| 0>
$$

Generalised eigenvector problem:

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

Variational Method

Large basis of operators \rightarrow matrix of correlators

$$
C_{i j}(t)=<0\left|O_{i}(t) O_{j}(0)\right| 0>
$$

Generalised eigenvector problem:

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

Eigenvalues \rightarrow energies

$$
\lambda^{(n)}(t) \rightarrow e^{-E_{n}\left(t-t_{0}\right)} \quad\left(t \gg t_{0}\right)
$$

Variational Method

Large basis of operators \rightarrow matrix of correlators

$$
C_{i j}(t)=<0\left|O_{i}(t) O_{j}(0)\right| 0>
$$

Generalised eigenvector problem:

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

Eigenvalues \rightarrow energies

$$
\lambda^{(n)}(t) \rightarrow e^{-E_{n}\left(t-t_{0}\right)} \quad\left(t \gg t_{0}\right)
$$

Eigenvectors \rightarrow optimal linear combination of operators to overlap on to a state

$$
\Omega^{(n)} \sim \sum_{i} v_{i}^{(n)} O_{i}
$$

$Z^{(n)}$ related to eigenvectors

$$
Z_{i}^{(n)} \equiv<0\left|O_{i}\right| n>
$$

Variational Method

Large basis of operators \rightarrow matrix of correlators

$$
C_{i j}(t)=<0\left|O_{i}(t) O_{j}(0)\right| 0>
$$

Generalised eigenvector problem:

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

Eigenvalues \rightarrow energies

$$
\lambda^{(n)}(t) \rightarrow e^{-E_{n}\left(t-t_{0}\right)} \quad\left(t \gg t_{0}\right)
$$

Eigenvectors \rightarrow optimal linear combination of operators to overlap on to a state

$$
\Omega^{(n)} \sim \sum_{i} v_{i}^{(n)} O_{i}
$$

$Z^{(n)}$ related to eigenvectors

$$
Z_{i}^{(n)} \equiv<0\left|O_{i}\right| n>
$$

Var. method uses orthog of eigenvectors; don't just rely on separating energies

Light Meson Spectroscopy

- Dynamical calculation (unquenched)
- Anisotropic - finer in temporal direction $\left(\mathrm{a}_{\mathrm{s}} / \mathrm{a}_{\mathrm{t}}=3.5, \mathrm{a}_{\mathrm{s}} \sim 0.12 \mathrm{fm}\right)$
- Only connected diagrams - isovectors (I=1) and kaons

Light Meson Spectroscopy

- Dynamical calculation (unquenched)
- Anisotropic - finer in temporal direction $\left(a_{s} / a_{t}=3.5, a_{s} \sim 0.12 \mathrm{fm}\right)$
- Only connected diagrams - isovectors (I=1) and kaons
- As an example: three degenerate 'light' quarks $\left(\mathrm{N}_{\mathrm{f}}=3, \mathrm{M}_{\pi} \approx 700 \mathrm{MeV}\right)$ SU(3) symmetry
- Also $\left(N_{f}=2+1\right) M_{\pi} \approx 520,440,400 \mathrm{MeV}$

Lower pion masses

Lower pion masses

Exotics summary

Exotics summary

Kaons

Lower the light quark mass $\left(\mathrm{N}_{\mathrm{f}}=2+1\right)-\mathrm{SU}(3)$ sym breaking

M_{π} / M_{K}	700	520	4.40
M_{π}	1	1.2	4.3

Kaons

Lower the light quark mass $\left(\mathrm{N}_{\mathrm{f}}=2+1\right)-\mathrm{SU}(3)$ sym breaking

$\mathrm{M}_{\pi} / \mathrm{MeV}$	700	520	440	400
$\mathrm{M}_{\mathrm{K}} / \mathrm{M}_{\pi}$	1	1.2	1.3	1.4

c.f. physical
$M_{K} / M_{\pi}=3.5$

No longer is C-parity a good quantum number for kaons (or a gen. of C-parity)

Combine $\mathrm{J}^{\mathrm{P}+}$ and $\mathrm{J}^{\mathrm{P} \text { - operators }}$

Physically, axial kaons [$\left.\mathrm{K}_{1}(1270), \mathrm{K}_{1}(1400)\right]$ are a mixture Suggested mixing angle $\approx 45^{\circ}$ (combination of exp and models)

But...

Kaons

Kaons - Operator Overlaps

Kaons - Operator Overlaps

Kaons - Operator Overlaps

Kaons - spectrum

Kaons - Various pion masses

$$
\begin{array}{cccc|}
\hline K^{\star}\left(1^{-}\right)
\end{array}
$$

Kaons - Various pion masses

$$
\begin{array}{ccc|}
\hline K^{\star}\left(1^{-}\right)
\end{array}
$$

Multi-particle states?

Multi-particle states?

Multi-particle states

Euclidean time: can't directly study dynamical properties like widths

Lüscher: energy shifts in finite volume \rightarrow phase shift

Free 2-particle levels

$$
\vec{p}=\frac{2 \pi}{L_{s}}\left(n_{x}, n_{y}, n_{z}\right)
$$

Multi-particle states

Euclidean time: can't directly study dynamical properties like widths

Lüscher: energy shifts in finite volume \rightarrow phase shift

$$
\vec{p}=\frac{2 \pi}{L_{s}}\left(n_{x}, n_{y}, n_{z}\right)
$$

Extract phase shift at discrete E

- Lüscher method

$$
\triangle E\left(L_{s}\right) \rightarrow \delta\left(E, L_{s}\right)
$$

$\pi \pi$ isospin 2

Photocouplings

Charmonium (quenched) - testing method

$$
C_{i j}\left(t_{f}, t, t_{i}\right)=<0\left|O_{i}\left(t_{f}\right) \bar{\psi}(t) \gamma^{\mu} \psi(t) O_{j}\left(t_{i}\right)\right| 0>
$$

Photocouplings

Charmonium (quenched) - testing method

$$
C_{i j}\left(t_{f}, t, t_{i}\right)=<0\left|O_{i}\left(t_{f}\right) \bar{\psi}(t) \gamma^{\mu} \psi(t) O_{j}\left(t_{i}\right)\right| 0>
$$

Conventional vector - pseudoscalar transition

Magnetic dipole transition - suppressed

Photocouplings

Exotic meson photocoupling

Photocouplings

Exotic meson photocoupling

Same scale as many measured conventional charmonium transitions

BUT very large for an M_{1} transition
$\Gamma\left(J / \psi \rightarrow \eta_{c} \gamma\right) \sim 2 \mathrm{keV}$

Suggests a spin-triplet hybrid

Summary and Outlook

Summary

- Our first results on light mesons - technology and method work
- First spin 4 meson extracted and confidently identified on lattice
- Exotics (and non-exotic hybrid candidates)
- Isovectors and kaons

Summary and Outlook

Summary

- Our first results on light mesons - technology and method work
- First spin 4 meson extracted and confidently identified on lattice
- Exotics (and non-exotic hybrid candidates)
- Isovectors and kaons

Outlook - ongoing work

- Multi-meson operators - resonance physics
- Disconnected diagrams - isoscalars and multi-mesons
- Baryons
- Photocouplings
- Lighter pion masses and larger volumes

Extra Slides

Spin on the lattice

On a lattice, 3D rotation group is broken to Octahedral Group

In continuum:
Infinite number of irreps: $\mathrm{J}=0,1,2,3,4, \ldots$

Spin on the lattice

On a lattice, 3D rotation group is broken to Octahedral Group

In continuum:

Infinite number of irreps: $\mathrm{J}=0,1,2,3,4, \ldots$

On lattice:
Finite number of irreps: $A_{1}, A_{2}, T_{1}, T_{2}, E \quad$ (and others for half-integer spin)

Irrep	A_{1}	$\mathrm{~A}_{2}$	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	E
Dim	1	1	3	3	2

Cont. Spin	0	1	2	3	4	\ldots
Irrep(s)	A_{1}	T_{1}	$T_{2}+E$	$T_{1}+T_{2}+A_{2}$	$A_{1}+T_{1}+T_{2}+E$	\ldots

Spin on the lattice

On a lattice, 3D rotation group is broken to Octahedral Group

2D Example

Eigenstates of angular momentum are $e^{i J \phi}$
On a lattice, the allowed rotations are $\phi \rightarrow \phi+\pi / 2$
Can't distinguish e.g. $J=0$ and $J=4$

Spin on the lattice

On a lattice, 3D rotation group is broken to Octahedral Group

In continuum:
Infinite number of irreps: $\mathrm{J}=0,1,2,3,4, \ldots$

Spin on the lattice

On a lattice, 3D rotation group is broken to Octahedral Group

In continuum:
Infinite number of irreps: $\mathrm{J}=0,1,2,3,4, \ldots$

On lattice:
Finite number of irreps: $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{E}$

Irrep	A_{1}	$\mathrm{~A}_{2}$	$\mathrm{~T}_{1}$	$\mathrm{~T}_{2}$	E
dim	1	1	3	3	2
cont. spins	$0,4,6, \ldots$	$3,6,7, \ldots$	$1,3,4, \ldots$	$2,3,4, \ldots$	$2,4,5, \ldots$

(and others for half-integer spin)

Spin and operator construction

Construct operators which only overlap on to one spin in the continuum limit
$\langle 0| \mathcal{O}^{J, M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{[J]} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}} \quad$ definite JPC

Spin and operator construction

Construct operators which only overlap on to one spin in the continuum limit

$$
\langle 0| \mathcal{O}^{J, M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{[J]} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}} \quad \text { definite J JPC }
$$

Cont. Spin	0	1	2	3	4	\ldots
Irrep(s)	A_{1}	T_{1}	$T_{2}+E$	$T_{1}+T_{2}+A_{2}$	$A_{1}+T_{1}+T_{2}+E$	\ldots

'Subduce' operators on to lattice irreps ($J \rightarrow \Lambda$):

$$
\langle\mathrm{O}| \mathcal{O}_{\Lambda, \lambda}^{[J]}\left|J^{\prime}, M\right\rangle=\mathcal{S}_{\Lambda, \lambda}^{J, M} Z^{[J]} \delta_{J, J^{\prime}}
$$

Given continuum op \rightarrow same Z in each Λ (ignoring lattice mixing)

Spin and operator construction

Construct operators which only overlap on to one spin in the continuum limit
$\langle 0| \mathcal{O}^{J, M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{[J]} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}} \quad$ definite J JP

Spin and operator construction

Construct operators which only overlap on to one spin in the continuum limit
$\langle 0| \mathcal{O}^{J, M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{[J]} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}} \quad$ definite J^{PC}

Circular basis for (spatial) Γ and D - transform as J=1
Couple together Γ and many D using SU(2) Clebsch Gordans
E.g. $\gamma_{i} \times \mathrm{D}=1 \times 1 \rightarrow \mathrm{~J}=0,1,2$

Spin and operator construction

Construct operators which only overlap on to one spin in the continuum limit
$\langle 0| \mathcal{O}^{J, M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{[J]} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}} \quad$ definite J JPC

Circular basis for (spatial) Γ and D - transform as $\mathrm{J}=1$
Couple together Γ and many D using SU(2) Clebsch Gordans
E.g. $\gamma_{i} \times \mathrm{D}=1 \times 1 \rightarrow \mathrm{~J}=0,1,2$
'Subduce' operators on to lattice irreps $(\mathrm{J} \rightarrow \Lambda)$:

$$
\langle\mathrm{O}| \mathcal{O}_{\Lambda, \lambda}^{[J]}\left|J^{\prime}, M\right\rangle=\mathcal{S}_{\Lambda, \lambda}^{J, M} Z^{[J]} \delta_{J, J^{\prime}}
$$

Spin and operator construction

Construct operators which only overlap on to one spin in the continuum limit
$\langle 0| \mathcal{O}^{J, M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{[J]} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}} \quad$ definite J JPC

Circular basis for (spatial) Г and D - transform as J=1
Couple together Γ and many D using SU(2) Clebsch Gordans

$$
\text { E.g. } \gamma_{i} \times D=1 \times 1 \rightarrow J=0,1,2
$$

'Subduce' operators on to lattice irreps ($\mathrm{J} \rightarrow \Lambda$):

$$
\langle 0| \mathcal{O}_{\Lambda, \lambda}^{[J]}\left|J^{\prime}, M\right\rangle=\mathcal{S}_{\Lambda, \lambda}^{J, M} Z^{[J]} \delta_{J, J^{\prime}}
$$

Given continuum op \rightarrow same Z in each Λ (ignoring lattice mixing)

Spin and operator construction

Construct operators which only overlap on to one spin in the continuum limit

$$
\langle\mathrm{O}| \mathcal{O}^{J, M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{[J]} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}}
$$

Spin and operator construction

Construct operators which only overlap on to one spin in the continuum limit

$$
\langle\mathrm{O}| \mathcal{O}^{J, M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{[J]} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}}
$$

'Subduce' operators on to lattice irreps:

$$
\langle 0| \mathcal{O}_{\Lambda, \lambda}^{[J]}\left|J^{\prime}, M\right\rangle=\mathcal{S}_{\Lambda, \lambda}^{J, M} Z^{[J]} \delta_{J, J^{\prime}}
$$

Spin and operator construction

Spin and operator construction

Construct operators which only overlap on to one spin in the continuum limit

$$
\langle\mathrm{O}| \mathcal{O}^{J, M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{[J]} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}}
$$

Spin and operator construction

Construct operators which only overlap on to one spin in the continuum limit

$$
\langle\mathrm{O}| \mathcal{O}^{J, M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{[J]} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}}
$$

'Subduce' operators on to lattice irreps $(J \rightarrow \Lambda)$:

$$
\langle 0| \mathcal{O}_{\Lambda, \lambda}^{[J]}\left|J^{\prime}, M\right\rangle=\mathcal{S}_{\Lambda, \lambda}^{J, M} Z^{[J]} \delta_{J, J^{\prime}}
$$

Spin and operator construction

Construct operators which only overlap on to one spin in the continuum limit

$$
\langle 0| \mathcal{O}^{J, M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{[J]} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}}
$$

'Subduce' operators on to lattice irreps ($J \rightarrow \Lambda$):

$$
\left.\langle\mathrm{O}| \mathcal{O}_{\Lambda, \lambda}^{[J]}\left|J^{\prime}, M\right\rangle=\mathcal{S}_{\Lambda, \lambda}^{J, M} Z^{[J]} \delta_{J, J^{\prime}}\right]
$$

- As an example: three degenerate 'light' quarks ($\mathrm{N}_{\mathrm{f}}=3, \mathrm{M}_{\pi} \approx 700 \mathrm{MeV}$)
- Dynamical (unquenched). Only connected diagrams (isovectors and kaons)

Calculation details

- Dynamical calculation. Clover fermions
- Anisotropic $\left(a_{s} / a_{\mathrm{t}}=3.5\right), \mathrm{a}_{\mathrm{s}} \sim 0.12 \mathrm{fm}, \mathrm{a}_{\mathrm{t}}{ }^{-1} \sim 5.6 \mathrm{GeV}$
- Two volumes: $16^{3}\left(\mathrm{~L}_{\mathrm{s}} \approx 2.0 \mathrm{fm}\right)$ and $20^{3}\left(\mathrm{~L}_{\mathrm{s}} \approx 2.4 \mathrm{fm}\right)$
- Only connected diagrams - Isovectors (I=1) and kaons
- As an example: three degenerate 'light' quarks ($\mathrm{N}_{\mathrm{f}}=3, \mathrm{M}_{\pi} \approx 700 \mathrm{MeV}$)
- Also $\left(\mathrm{N}_{\mathrm{f}}=2+1\right) \mathrm{M}_{\pi} \approx 520,440,400 \mathrm{MeV}$

Z values

$\left.\left.\left.\langle 0|\right|_{\Lambda,, \lambda} ^{[J]}\right]^{\prime}, M\right\rangle=s_{\lambda, \lambda}^{J, M} Z^{[J]} \delta_{J, J^{\prime}}$
$\mathrm{J}=$ continuum spin of op

Z values - spin 4

$$
\langle\mathrm{O}| \mathcal{O}_{\Lambda, \lambda}^{[J]}\left|J^{\prime}, M\right\rangle=\mathcal{S}_{\Lambda, \lambda}^{J, M} Z^{[J]} \delta_{J, J^{\prime}}
$$

Given continuum op \rightarrow

same Z for each irrep subduced to

