

Common Detector R&D Plan for MeRHIC & MEIC

First ideas for a detector concept

- □ low mass vertex-tracker / tracker
 - important to keep resolution for low energy scattered electrons as good as possible
 - Possible solutions
 - Gossip (investigated by LHeC)
 - GEM-Tracker (STAR)
 - high resolution gas-chambers
 - TRD
 - combine tracking and lepton/hadron separation
 - develop a radiator which allows e/h at low momentum p~1GeV (compare Alice-TRD)
- ☐ PID @ mid-rapidity
 - > develop a detector concept to separate π , K and p for momenta =< 4 GeV
 - Possible solutions

BROOKHAVEN E.C. Aschenauer

- DIRC Panda vs. BABAR concept
- high resolution ToF ~20ns → 4 GeV@1m from IP
 - Multi-Gap Resistive Plate Chamber (MRPC)

Common Detector R&D

Photon detection

- > develop cost-effective photon detection replacing PMTs
 - Possible Solutions
 - big area SiPMs
 - work in magnetic field without any shielding
 - large dynamic range (number of pixels)
 - extremely compact → space → hermitcity
 - cost effective → no light guides
 - HPDs

☐ ION Polarimetry

- \triangleright need small systematics ~3% with high statistics \rightarrow bunch by bunch measurements
 - protons: high intensity polarised jet vs. unpolarised jet
 - @ He-3: how? Will the technology for proton work

Prove that a DAQ/trigger system can handle the high event rates and data volumes (a combination of luminosity, detector channels, multiplicity and background) associated with the highest-projected luminosity and, for MEIC, with RF at frequencies of 0.5 (1.5) GHz.

- 1) MEIC/ELIC specific: Push event readout @ relatively small event size
 - Explore development of higher channel density per Flash ADCs
 - Continue development of on-board high-speed FPGA, including algorithm development, timing simulation, and board layout techniques
 - Include latest high-speed Gigabit serial I/O for transporting readout and trigger data. Includes firmware, timing simulation, layout analysis
 - R&D for a VXS "switch" path for the event readout data from each crate exceeding present VME readout rate.
 - Continue R&D with latest FPGA devices and develop global trigger algorithms for use with pipeline front end modules and large scale, complex detector geometries. E.g., R&D inclusion of vertex tracking in trigger algorithm.
- 2) General (Common R&D): Push data volume rate

BROOKHAVEN E.C. Aschenauer

Develop fast zero subtraction electronics to minimize data volume
Faster ASIC chip development for inner detector readout

The most critical "pre-R&D" is to prove that a DAQ/trigger system can handle the high data rates (a combination of luminosity, detector channels, multiplicate and background) associated with the highest-projected luminosity and RF at frequencies of 0.5 (1.5) GHz. We anticipate this to be a 2-3 year project done in close collaboration between the Fast Electronic Group and the MEIC Nuclear Physicists.

This requires (see slides in Appendix for details):

1) 5.5 FTE-years:

BROOKHAVEN E.C. Aschenauer

one electrical engineer for a three-year period one electrical designer for a three-year period

2) \$150K in procurements

applying 40% of contingency/overhead

Note: in 2007 this task was estimated as 10 FTE-years and \$700K M&S, and was as 5-year task included in plans presented to NSAC/LRP and DOE/NP.

Next-in-line most critical MEIC "pre-R&D" item:

Effort from SC Magnet engineering manpower starting FY10, totaling about 4 FTEs, + small (\$300K?) contracts to verify feasibility of detector and final-focusing SC magnets (following 12 GeV model)

BACKUP

Appendix: MEIC Physics Most Critical R&D

Activity	Detailed Description	Manpower
	Explore the development of higher channel density per module. ADC	
	available at higher sampling rates but power consumption is a significant	
	challenge. New multichannel, low power devices with serial outputs are	
Flash ADC	attractive.	.5 FTE (EE)
	Continue development of on board high speed FPGA using the latest	
	FPGA devices. Development includes algorithm development work,	
FADC FPGA	timing simulation, and board layout techniques	.5 FTE (EE)
FADC FPGA	Continue development with FPGA that contain the latest high speed	
	Gigabit Serial I/O for transporting readout and trigger data.	
	Development includes firmware, timing simulation, and board layout	
Gigabit FPGA	analysis tools	E
Gigabit FPGA	arialysis tools	.5 FTE (EE)
	Build on the existing success of our VXS trigger data transmission. Begin	
Event Readout	R&D for a VXS 'Switch' path for the event readout data from each crate	
(DATA Path)	that easily exceeds the present VME readout data rate.	1 FTE (EE)
Global Trigger	Continue R&D with the latest FPGA devices and develop global trigger	
FPGA	algorithms for use with pipeline front end modules and large scale,	
Processing	complex detector geometries	1 FTE (EE)
Computer Aided		
Design Computer	This is not R&D, but the manpower associated with the R&D efforts will	
Aided Engineering	require Designers with expertise in high speed, multi-layer circuit	
CAD/CAE	boards, schematic capture, and circuit board modeling tools.	2 FTE (ED)
TOTAL (FTE)		5.5 FTE

BROOKHAVEN E.C. Aschenauer

Appendix: MEIC Physics Most Critical R&D

Procurements		Cost (USD)
FPGA Tools	Xilinx or Altera full development tools (2 Licenses)	\$6K
Schematic		_
capture; Board		
Layout	"Altium" design suite or equal (2 Licenses)	\$8K
VHDL Synthesis		
and Simulation		
Tools	Aldec, MicroSim, or other tools from FPGA vendors (2 Licenses)	\$6K
FPGA Evaluation	Latest versions of FPGA devices available from vendors for testing and	
Modules	algorithm simulation (2 eval kits)	\$6K
	Digital Serial Analyzer (DSA) for high speed multi-Gigabit serial devices	_
Oscilloscope	and circuit designs	\$50K
Test crates	VXS full crate with power supply	\$10K
Peripherals	Board extenders, fiber optic devices, test equipment, cabling	\$15K
TOTAL		\$101K

Detector Requirements from Physics

ep-physics

- > the same detector needs to cover inclusive (ep -> e'X), semi-inclusive (ep -> e'hadron(s)X) and exclusive (ep -> e'p π) reactions
 - large acceptance absolutely crucial (both mid and forward-rapidity)
 - particle identification is crucial
 - \blacksquare e, π , K, p, n over wide momentum range and scattering angle
 - excellent secondary vertex resolution (charm)
 - particle detection to very low scattering angle
 - around 1° in e and p/A direction
 - → in contradiction to strong focusing quads close to IP
- > small systematic uncertainty (~1%/~3%) for e/p polarization measurements
- > very small systematic uncertainty (~1%) for luminosity measurement

eA-physics

- > requirements very similar to ep
 - challenge to tag the struck nucleus in exclusive and diffractive reactions.
 - @ difference in occupancy must be taken into account

MeRHIC Detector in Geant-3

- □ DIRC: not shown because of cut; modeled following Babar
- □ no hadronic calorimeter in barrel, because of vertical space @ IP-2