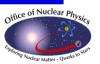
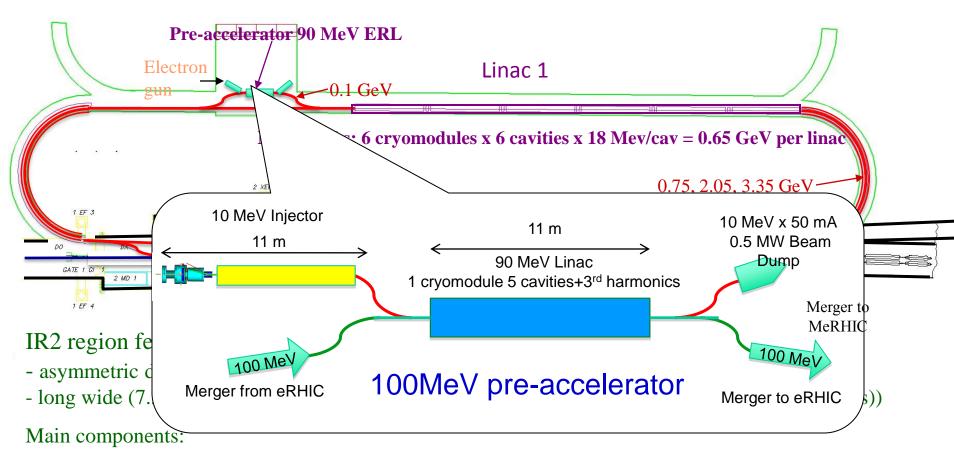
Engineering Challenges and Solutions for MeRHIC

Andrew Burrill for the MeRHIC Team




Andrew Burrill EICAC November 2-3 2009

Key Components

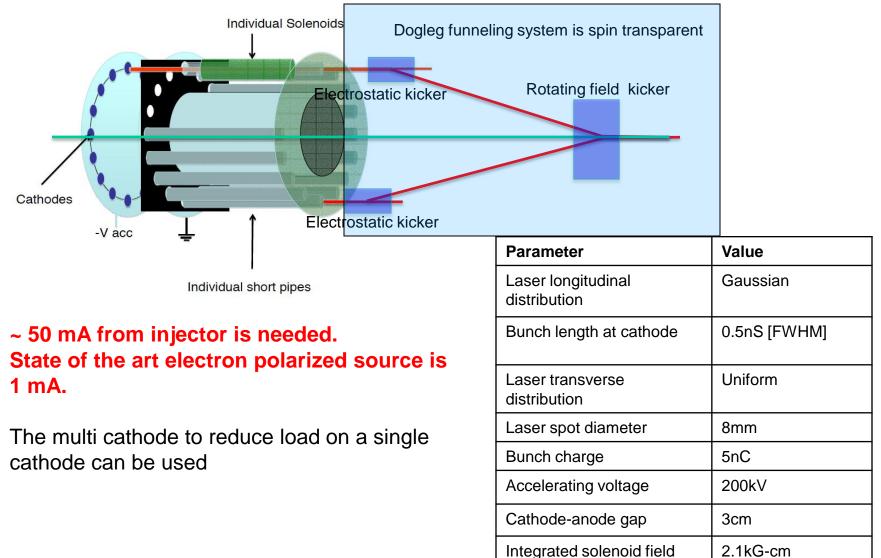
- Photoinjector Design
- Photocathodes & Drive Laser
- Linac Cavities
 - 703.75 MHz 5 cell cavities
 - 3rd Harmonic Cavities
 - HOM absorbers
- Cryomodule Design
- Magnet Design
- Vacuum System
- RF systems
- Cryogenic System
- Tunnel Installation

MeRHIC: General layout

-100 MeV injector on the basis of polarized electron gun (50 mA) and pre-accelerator ERL.

-Two main ERLs (one of them in the RHIC tunnel) with maximum 0.65 GeV energy gain per linac.

-Recirculation passes are going outside of the existing tunnel: warm magnets, acceptable synchrotron radiation power.


NATIONAL LABORATORY

Andrew Burrill EICAC November 2-3 2009

Gatling Gun^{*)}

*) the Gatling gun is the first successful machine gun, invented by Dr. Richard Jordan Gatling.

Presently no Commercial Laser to meet the need

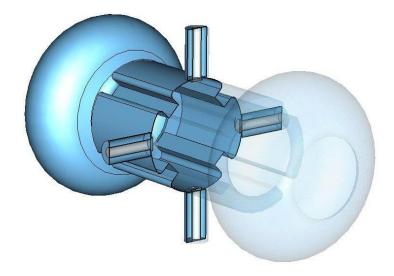
LDRD for laser development 2W/mA (780 nm, 0.1% QE)

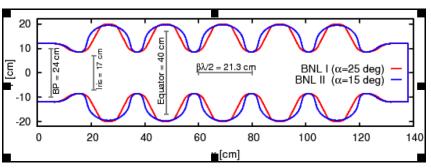
- Three possible approaches:
 - Fiber oscillator \rightarrow Fiber amplifier \rightarrow 2ħ ω to 780 nm
 - − Ti:S Oscillator → Ti:S amplifier 780 nm
 - Diode oscillator \rightarrow Power amplifier 780 nm
- All three approaches will be evaluated
- Best selected, built & test to drive up to 2 mA
- Expected Results
- Laser to drive one cathode of the multi cathode gun
- Laser system scalable to deliver full EIC electron beam

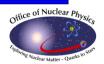
2 LDRD's for the new injector and laser have been approved

Linac Cavities

- We have a large number of SRF cavities in MeRHIC:
 - Main linac 72 elliptic 5-cell cavities at 703.75 MHz and 2 second harmonic cavities (1.4075 GHz)
 - Pre-accelerator linac 5 703.75 MHz elliptic 5-cell cavities and one 3rd harmonic cavity.
 - Injector linac Seven 112 MHz quarter wave cavities and one 336 MHz single-cell cavity.
 - Energy loss compensator cavity a single 703.75 elliptical two-cell cavity.
- We are in a strong position in high-current ERL cavities, but-
- there is a lot of R&D and engineering to be done. We are carrying out an aggressive R&D program.

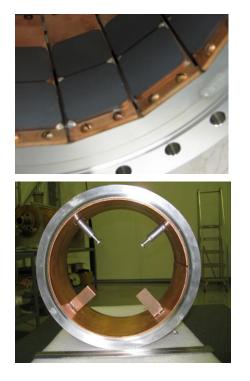





6

- Development of next generation:
- Reduce Hpeak by 18% to 4.7 mT/MV/m
- Increase Epeak 19% to 2.34
- Increase R/Q 7% to 465Ω
- Reduce stiffness by a factor of 2.
- Apply new ideas in HOM damping:
 - Reduce evanescent fundamental in beam tubes
 - Increase real-estate gradient

Supported by a DOE HEP grant through Stony Brook CASE



HOM Absorbers/ Dampers

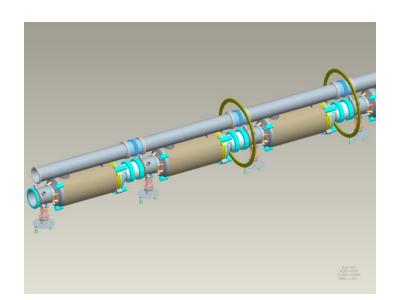
In BNL I, damping is done with ferrites. For BNL II, we are considering pick-up probes in the beam tube. Measured Q_{HOM} of a few 1000's, Q_{FUND} about 10⁸. Expected result: Compact, simple HOM damping.

Linac Components

- Preliminary Engineering & Design (PED)
 - Cavity & Cryomodule Design of six (6) SRF cavity types, their helium vessels, support systems, thermal & magnetic shielding, vacuum vessels & other components
 - Risk Required iterative design process between scientific & engineering staff can result in increased labor cost. 4 of 6 required cavities similar to previous designs – remaining 2 will each require a new design
 - ERL 5-cell Cavity

- **Construction Procurement**
 - Cryomodule Component & Cavity
 - Procurement of all SRF cryomodule components including cavities (93 units total)
 - Risk Moderate due to price fluctuations in strategic materials (Nb, SST, Cu) and limited number of cavity vendors. Quantity/variety of cavities may require multiple vendors – depending on schedule & global demand – impacting cost.





9

Cryomodule Design

- Cryomodule development
 - "out-of-the-box" approach to modern cryomodules
 - Emphasis on modularity, cleanliness, maintenance

RF Systems – Main and Pre-accelerator Linacs

Main Linac and pre-accelerator:

- 77 5-cell cavities at 703.75 MHz powered individually by 15 kW power amplifiers
- 2 each 2nd harmonic cavities at 1.4 GHz powered by 250 kW power amplifiers
- 1 each 3rd harmonic cavity at 2.1 GHz powered by 15 kW power amplifier

Injector Linac:

- 7 quarter wave cavities at 112 MHz powered individually by 100 kW power amplifiers
- 1 each 3rd harmonic single cell cavity at 336 MHz powered by 15 kW amplifier

Energy loss comp cavity:

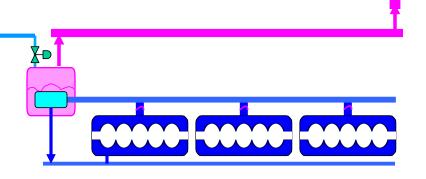
1 each 2-cell cavity at 703.75 MHz powered by 350 kW amplifier

11

Cryogenics System

- Cavity cooling:
 - 1.9K @ cavities
 - 1.8K @ HX / cold compressor bath
 - **Quiet System:** Vibration & microphonics
 - Heat transfer: SFTC or local evaporation
- Quad cooling: 1.8K: Leads: HTS with shield flow as lead flow 4.5K: Leads: Normal leads.
- Sub-atmospheric system type/configuration
 - •Hybrid: Cold compression/ warm compression
 - 100% cold compression
- New 4.5K plant @ 2 O'clock; Existing RHIC plant (1005) for Collider
- Use existing RHIC Plant for MeRHIC & RHIC
- New plant for both RHIC and MeRHIC





Cryogenics System

SUPERFLUID HEAT TRANSFER:

- SFT Conduction via pressurized superfluid
 - Heat exchanger every 3 cavities
 - ~ 8 inch Superfluid line
 - 8 inch 12 Torr Vapor return line outside cryostat
- 2-φ flow boiling (LHC) heat transfer
 from pressurized superfluid
 - Continuous heat exchanger
 / two-phase flow / vapor return

<u>-</u>D

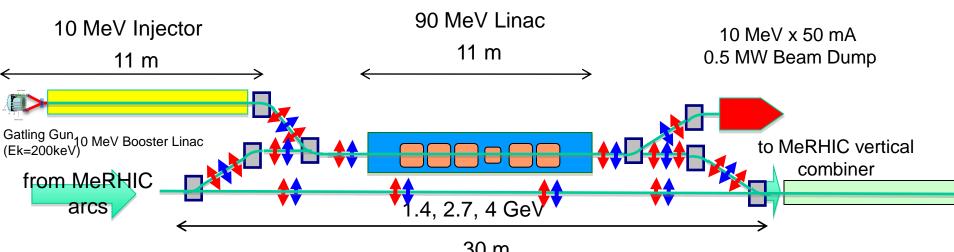
Tunnel Installation

- Only Four year construction project CD-3 to CD-4
- Critical Items must be ordered during CD-1 and CD-2
- RHIC Operations Schedule During Construction
- New Tunnel tied in 2 years after CD-3
- Temporary Shielding at Tunnel Tie-in
 - Existing 20 Ton Crane!
- Long Lead Items will drive schedule

۱۸

Ν

S


Conclusions

- Key Technical challenges have been identified
- Technical and cost reviews are underway to identify items of concern
- An early jump on the planning will allow for a successful project to be carried out
- SRF infrastructure is growing at BNL to handle the anticipated cavity workload
- C-AD department and BNL site have a wealth of experience in large scale construction projects
 - RHIC
 - NSLS
 - NSLS-II
 - Collaboration on other programs, SNS, LHC etc.

100 MeV Pre Accelerator ERL

30 m

Injector Parameters Polarized Gun (200kV) Cathode GaAs, Laser 780nm Emax= 10 MeV lavr = 50 mA. Q per bunch =5nC

Pre-accelerator ERL:

One pass Energy gain 90 MeV Einj & Eextr=10 MeV Fmax =100 MeV

<u>eBeam parameters :</u> E=100 MeV lavr=50 mA Ipeak=500 A Reprate = 9.8 MHz Emittance =70 mm-mrad Banchlength = 3 mmdE/E = 1E-3

stice of Nuclea

EICAC November 2-3 2009 Andrew Burrill

Andrew Burrill EICAC November 2-3 2009

Cavity Processing & String Assembly - PED

- Process & String Assembly Tooling Design fixtures & tooling required to clean bake, polish, rinse, cold-test cavities and assemble cavity/helium vessel assemblies into hermetic string. (Class 100 Cleanroom).
 - Risk is estimated as moderate based on past experience.

Construction - Procurement

- SRF Processing/String/Installation Tooling Procurement
 - Procurement of cavity tooling required to process all 6 types of cavities (93 units total).
 - Risk Low based on recent experience. Fairly low-tech components.

Cavity Processing

- Costs of all processing steps cleaning, baking, polishing, rinsing, etc. through to and including string assembly.
- Risk Moderate level of risk, since multiple vendors may be required (including BNL facility) to achieve needed throughput.

