Gluons and low x in e+A collisions

Cyrille Marquet

Theory Division - CERN

e+A Small-x Science Matrix

Primary new science deliverables	What we hope to fundamentally learn	Basic measurements	Typical required precision	Special requirements on accelerator/ detector	What can be done in phase I	Alternatives in absence of an EIC	Gain/Loss compared with other relevant facilities	Comments
integrated nuclear gluon distribution	The nuclear wave function throughout x-Q ² plane	F _L , F _{2,} F _L ^c , F ₂ ^c	What HERA reached for F2 with combined data	displaced vertex detector for charm	stage 1: large- x & large-Q ² need full EIC, for F_L and F_2^c	p+A at LHC (not as precise though) & LHeC	First experiment with good x, Q ² & A range	This is fundamental input for A+A collisions
k _T dependence of gluon distribution and correlations	The non- linear QCD evolution - Qs	SIDIS & di- hadron correlations with light and heavy flavors		Need low-pt particle ID	SIDIS for sure TBD: saturation signal in di- hadron p _T imbalance	I) p+A at RHIC/LHC, although e+A needed to check univerality 2) LheC	Cleaner than p+A: reduced background	
b dependence of gluon distribution and correlations	Interplay between small-x evolution and confinement	Diffractive VM production and DVCS, coherent and incoherent parts	50 MeV resolution on momentum transfer	hermetic detector with 4pi coverage low-t: need to detect nuclear break-up	Moderate x with light and heavy nuclei	LHeC	Never been measured before	Initial conditions for HI collisions – eccentricity fluctuations

Integrated gluons

Inclusive structure functions

 $F_2 \ , \ F_L \ , \ F_2^c \$ this is fundamental knowledge about the nuclear wave function that is still lacking

the most basic observables from the theory side, they will be the first observables for which non-linear QCD evolution will be available at NLO

 F₂ measurement with the smallest x reach, but there is a cancelation of non-linear effects in F₂ (from summing F_T and F_L) this is presumably why the leading-twist approximation is able to describe F₂ down to 2 GeV² at HERA, if we had as precise F_L data, we might see the collinear approach fail already at 5-10 GeV²

Inclusive structure functions

 $F_2 \ , \ F_L \ , \ F_2^c \$ this is fundamental knowledge about the nuclear wave function that is still lacking

the most basic observables from the theory side, they will be the first observables for which non-linear QCD evolution will be available at NLO

- F₂ measurement with the smallest x reach, but there is a cancelation of non-linear effects in F₂ (from summing F_T and F_L) this is presumably why the leading-twist approximation is able to describe F₂ down to 2 GeV² at HERA, if we had as precise F_L data, we might see the collinear approach fail already at 5-10 GeV²
- F_L better access to the gluon distribution, but can't reach x as small because of an energy scan is needed for the measurement
- F₂^c better access to the gluon distribution, but can't reach x as small because of the large charm quark mass

we should aim, for all of these, to get the same precision that was reached at HERA with the F_2 combined data

also, the heavy-ion program at the LHC would benefit a lot from a precise determination of nuclear pdfs over a large x-Q² range (similar to the impact of HERA on the p+p program)

The importance of saturation

average strength of dipole scattering Diehl and Lappi $\langle T_{q\bar{q}} \rangle_{2,L}(x,Q^2) = \frac{\int d^2r \ dz \ |\psi_{2,L}(z,\mathbf{r};Q^2)|^2 \int d^2b \ T_{q\bar{q}}^2(\mathbf{r},\mathbf{b};x)}{\int d^2r \ dz \ |\psi_{2,L}(z,\mathbf{r};Q^2)|^2 \int d^2b \ T_{q\bar{q}}(\mathbf{r},\mathbf{b};x)}$

•

 $T_{q\bar{q}} \ll 1 \Rightarrow \text{linear dynamics}$ $T_{q\bar{q}} \lesssim 1 \Rightarrow \text{large gluon density, saturation}$ average dipole scattering amplitude $\langle T_{q\bar{q}} \rangle_{T,L} < 0.6 - 0.7$ and not 1 because of b int

The importance of saturation

• average strength of dipole scattering Diehl and Lappi $\int \frac{1}{2} = l + \frac{1}{2} = (-2) \frac{1}{2} \int \frac{1}{2} \frac{$

$$\langle T_{q\bar{q}} \rangle_{2,L}(x,Q^2) = \frac{\int d^2r \ dz \ |\psi_{2,L}(z,\mathbf{r};Q^2)|^2 \int d^2b \ T_{q\bar{q}}^2(\mathbf{r},\mathbf{b};x)}{\int d^2r \ dz \ |\psi_{2,L}(z,\mathbf{r};Q^2)|^2 \int d^2b \ T_{q\bar{q}}(\mathbf{r},\mathbf{b};x)}$$

 $T_{q\bar{q}} \ll 1 \Rightarrow \text{linear dynamics}$ $T_{q\bar{q}} \lesssim 1 \Rightarrow \text{large gluon density, saturation}$ average dipole scattering amplitude $\langle T_{q\bar{q}} \rangle_{T,L} < 0.6 - 0.7$ and not 1 because of b int

off the proton

$$\langle T_{q\bar{q}} \rangle_L \simeq 0.4 \text{ for } Q^2 = 2 \text{ GeV}^2$$

undoubtedly probing saturation/unitarity

better to increase A that to decrease x

Detecting deviations from DGLAP

- Could DGLAP describe data in the saturation region:? no
- create small-x pseudo-data with non-linear QCD evolution
- perform a DGLAP fit only in the "safe region" large Q^2 region
- evolve into the "saturation" region using DGLAP
- compare to what a full DGLAP fit would have produced

systematic downward shift: signal of deviations from DGLAP

for a Pb nucleus, deviations from DGLAP would be unambiguously identified within the x range of the full-energy EIC

Diffractive structure functions

they have never been measured in e+A

the sensitivity to saturation is better in diffraction, in fact many hints from saturation at HERA come from diffraction:

the constant ratio, with increasing energy, of the diffractive to inclusive cross section does not reflect the x dependence expected in the linear regime: $\sigma_{incl} \sim xg(x)$, $\sigma_{diff} \sim [xg(x)]^2$

the data feature geometric scaling which is not explained in the DGLAP approach

Diffractive structure functions

they have never been measured in e+A

the sensitivity to saturation is better in diffraction, in fact many hints from saturation at HERA come from diffraction:

the constant ratio, with increasing energy, of the diffractive to inclusive cross section does not reflect the x dependence expected in the linear regime: $\sigma_{incl} \sim xg(x)$, $\sigma_{diff} \sim [xg(x)]^2$

the data feature geometric scaling which is not explained in the DGLAP approach

quantitatively, DGLAP fits for the inclusive structure function F_2 become problematic for Q² below 4 GeV² while for the diffractive structure function F_2^{D} they become problematic at a much higher Q² around 8 GeV²

at HERA 10-15 % of events are diffractive, at an EIC we expect 30-35 %

k_T-dependent gluons - distributions and correlations

measured only at high x and for light nuclei

• at small x hadronization happens outside the nuclear matter

the k_T dependence of the gluon distribution can be extracted from the P_T dependence of the SIDIS cross-section

for saturation physics the relevant regime is low P_T (~ Qs)

measured only at high x and for light nuclei

• at small *x* hadronization happens outside the nuclear matter

the k_T dependence of the gluon distribution can be extracted from the P_T dependence of the SIDIS cross-section

for saturation physics the relevant regime is low P_T (~ Qs)

 unique opportunity to study non-linear effects, while staying away from non-perturbative physics
CM, Xiao and Yuan (2009)

even if Q² is much bigger than Q_s², the saturation regime is important when $P_{\perp}^2 \sim Q_s^2$

in fact, thanks to the existence of Q_s , the limit $|P_{\perp}| \rightarrow 0$ is finite

Di-hadron angular correlations

comparisons between d+Au $\rightarrow h_1 \ h_2 \ X$ (or p+Au $\rightarrow h_1 \ h_2 \ X$) and p+p $\rightarrow h_1 \ h_2 \ X$

Di-hadron angular correlations

comparisons between d+Au $\rightarrow h_1 \ h_2 \ X$ (or p+Au $\rightarrow h_1 \ h_2 \ X$) and p+p $\rightarrow h_1 \ h_2 \ X$

Di-hadron correlations in e+A

never been measured, we expect to see the same effect in e+A vs e+p

at small x, multi-gluon distributions are as important as single-gluon distributions, they contribute to such di-hadron correlations

Di-hadron correlations in e+A

never been measured, we expect to see the same effect in e+A vs e+p

at small x, multi-gluon distributions are as important as single-gluon distributions, they contribute to such di-hadron correlations

the description of the RHIC data is therefore subject to uncertainties

the same gluon correlations are involved in the d+Au case but the e+A measurement can constrain them better

the non-linear evolution of $(k_T$ -dependent) multi-gluon distributions is different from that of the single-gluon distribution, and it is equally important to understand it

b-dependent gluons distributions and correlations

Diffractive vector meson production

Stage 1: precise transverse imaging of the gluons, from light to heavy nuclei Stage 2: how the small-x evolution modifies the transverse distribution of gluons

target dissociation (incoherent): the target undergoes inelastic scattering, dominates at large |t|

breakup into the nucleons \rightarrow slower exp. fall at 0.02 < -t < 0.7 GeV²

breakup of the nucleons → power-law tail at large |t|

Coherent vs incoherent

• coherent diffraction measured only at high x and for light nuclei

the b dependence of the gluon distribution is obtained from the t dependence of the cross section by Fourier transformation

it is often assumed that gluons from different nucleons are independent, the EIC allows to study how this changes with the non-linear QCD evolution towards small x

Coherent vs incoherent

• coherent diffraction measured only at high x and for light nuclei

the b dependence of the gluon distribution is obtained from the t dependence of the cross section by Fourier transformation

it is often assumed that gluons from different nucleons are independent, the EIC allows to study how this changes with the non-linear QCD evolution towards small x

 incoherent diffraction has never been measured gives access to gluon correlations in the transverse plane

the distribution and correlations of small-x gluons in the transverse plane are poorly known, without this knowledge for instance one cannot achieve a quantitative understanding of important RHIC results

the initial nuclear wave functions in relativistic heavy-ion collisions are the source of large uncertainties, their descritption is based on expectations which need to be checked and constrained with e+A data

e+A physics at higher-x

Nuclear quarks and gluons

the EIC can reveal the nuclear structure throughout the (x,Q^2) plane, from gluon saturation at low x to the gluon EMC effect and its Q^2 evolution at high x

• QCD fits on e+A pseudo-data

with √s=12, 17, 24, 32, 44 GeV 63, 88, 124 GeV

(medium energy EIC – stage I) (full energy EIC – stage I)

allows to estimate nuclear quark and gluon distributions and their uncertainties

the EIC has constraining power, it will be to nuclei what HERA is to the proton

• Nuclear GPDs, nuclear TMDs

In-medium fragmentation

from the energy loss and p_T-broadening of leading partons as well as jet-shape modifications, the EIC can measure fundamental properties of cold nuclear matter: \hat{e} , \hat{q} , modifications of angular ordering

• heavy quarks

for the first time, the in-medium hadronization and propagation of heavy quarks can be studied, and the pQCD description of cold nuclear matter can be tested

Conclusions

- very little is known about the structure of nuclei at small x
 - only for inclusive structure functions we have data at moderate **x**
 - SIDIS and exclusive VM production data are at high x or for light nuclei
 - diffractive structure functions have never been measured
- crucial measurements at an EIC
 - inclusive and diffractive structure functions: integrated gluons
 - semi-inclusive DIS: the k_T dependence of the gluon distribution
 - di-hadron correlations: the k_T dependence of the gluon correlations
 - coherent diffraction: the impact-parameter dependence
 - incoherent diffraction: spatial correlations between small-x gluons
- in-medium fragmentation at an EIC
 - unprecedented v range to study hadronization and parton propagation
 - unprecedented access to heavy quarks