Spatial imaging of the nucleon and nuclei at an Electron-Ion Collider

Vadim Guzey

EIC Advisory Committee meeting Jefferson Lab, April 10, 2011

Thomas Jefferson National Accelerator Facility

The science of an EIC

Three major science questions for an EIC from NSAC LRP07:

- What is the internal landscape of the nucleon?
- What is the role of gluons and their self-interactions in nucleons and nuclei?
- What governs the transition of quarks and gluon into pions and nucleons?

EIC science goals:

- Map the spin and spatial structure of quarks and gluons in nucleons
- Discover the collective effects of gluons in atomic nuclei
- Understand the emergence of hadronic matter from quarks and gluons

The science of an EIC

Three major science questions for an EIC from NSAC LRP07:

- What is the internal landscape of the nucleon?
- What is the role of gluons and their self-interactions in nucleons and nuclei?
- What governs the transition of quarks and gluon into pions and nucleons?

Kinematic coverage at EIC and accessing sea quarks and gluons

- Nucleon/nucleus is a many-body system
- Deep inelastic scattering (DIS) probes different parton (quark and gluon) components of wave function

Figure due to C. Weiss

Physics of spatial/3D imaging of parton distributions

Two complimentary pictures of the nucleon/nucleus

Generalized parton distributions (GPDs) and dipole amplitudes: Distributions in (x,b_T)

TMDs: Distributions in (x,k_T)

 correlations and distributions of partons in the transverse plane (b_T) (tomographic image of nucleon/nucleus at given x, transverse size of parton distributions)

• encode information on non-perturbative dynamics and origin of various parton distributions:

- orbital angular momentum \rightarrow helicity sum rule
- \cdot chiral dynamics at large \boldsymbol{b}_{T}
- \cdot Gribov diffusion at small x

□ important for pp and pA phenomenology at RHIC and LHC (b_T dependence of PDFs)

 \square essentially unknown for sea quarks and gluons \rightarrow EIC

Science matrix of GPD studies at an EIC

- GPDs are accessed in exclusive reactions; theory (factorization, Q² evol.) well-established
- Spatial imaging in b_T via Fourier transform w.r.t. momentum transfer t

Jefferson Lab

Channel • unpol. singlet quarks and gluons (NLO) • gluon • sea quarks and gluon: flavor separation

Special requirements/uniqueness of EIC

- wide kinematic coverage in x and Q²: access to low x (sea quarks and gluons) and high Q² (factorization and Q² evolution for constraining parameterizations of GPDs)
- high luminosity for precision and multidimensional binning
- L and T polarization (> 70% for collider)
- exclusivity with Roman pots

Science matrix of GPD studies at an EIC (Cont.)

- GPDs are accessed in exclusive reactions; theory (factorization, Q^2 evol.) well-established
- Spatial imaging in $\boldsymbol{b}_{\mathrm{T}}$ via Fourier transform w.r.t. momentum transfer t

Process

- Production of π , K, K*, ρ^+

Channel

- polarized and unpol. sea and valence quarks, including strangeness
- new for collider, natural extension of JLab12 program
- tests of factorization

Special requirements/uniqueness of EIC

- wide kinematic coverage in x and Q^2 : access to low x (sea quarks and gluons) and high Q^2 (factorization and Q^2 evol.)
- high luminosity for precision and multidimensional binning
- L and T polarization (>70% for collider)
- exclusivity with Roman pots
- L/T separation
- more symmetric energies for PID

Example 1: Simulation of DVCS cross section for EIC

E. Aschenauer, M. Diehl, S. Fazio (from the write-up of the INT10-03 program)

Thomas Jefferson National Accelerator Facility

Example 2: Simulated DVCS beam-spin asymmetry

$$A_{LU} = \frac{d\sigma^{\leftarrow} - d\sigma^{\rightarrow}}{d\sigma^{\leftarrow} + d\sigma^{\rightarrow}}$$
 20x250 GeV

- in typical kinematic bin $1.6x10^{-3} < x < 2.5x10^{-2}$ and $3.2 < Q^2 < 5.6$
- 3 months with 50% efficiency at $L=10^{34}$ will provide 10-15% accuracy on Im *H* for singlet quarks
- using L and T polarized hadron beam, will access other GPDs

R. Geraud, H. Moutarde, F. Sabatie, INT write-up

Example 3: Production of π^+

5x50 GeV

 $e p \rightarrow e' \pi^+ n$

- probes polarized quark GPDs Htilde and Etilde
- flavor structure u-d
- replacing π^+ by $K^+ \rightarrow$ will probe 2u-d-s
- requires luminosity and L/T separation, but does not need high energy

T. Horn, INT write-up

Spatial imaging of sea quarks and gluons in nuclei

- GPDs in nuclei can be accessed in exclusive reactions with nuclei (DVCS, J/ψ production); the same physics motivation as for proton
- Integral part of studies of the gluon density in nuclei
- First time at collider; essentially unknown (!)
- Dependence on b_T is very (!) important for modeling pA collisions at RHIC and LHC
- Predicted theoretically in the leading twist theory of nuclear shadowing

$$R^{j}(x,b,Q^{2}) = \frac{f_{j/A}(x,Q^{2},b)}{A T_{A}(b)f_{j/N}(x,Q^{2})} = \frac{H^{j}_{A}(x,\xi=0,b,Q^{2})}{A T_{A}(b)f_{j/N}(x,Q^{2})}.$$

- Nuclear suppression (shadowing)is larger at small b and x
- Average transverse size of the distribution of partons in b-plane, <b2>, increases
 - → can be tested experimentally in DVCS and VM production

L. Frankfurt, V. Guzey, M. Strikman, INT write-up

Spatial imaging of sea quarks and gluons in nuclei (Cont.)

• Need to guarantee full exclusivity \rightarrow experimental challenge

• Position of minima depend on the interplay between LT shadowing and saturation → MC simulations, W.A.Horowitz: T. Toll and T. Ullrich, INT write-up

Thomas Jefferson National Accelerator Facility

Reconstructing quark and gluon GPDs using unique EIC capabilities (and available manpower)

Summary

A future high-energy and high-luminosity Electron-Ion Collider with polarized beams will have excellent capabilities for precision studies of the spatial/3D sea quark and gluon structure of the nucleon and nuclei in exclusive processes.

