INT Program Overview

Markus Diehl Deutsches Elektronen-Synchroton DESY

EIC Advisory Committee Meeting Jefferson Lab, 10 April 2011

Program "Gluons and the quark sea at high energies: distributions, polarization, tomography

- INT, University of Washington, 13 Sept to 19 Nov 2010
- overall aim: help develop and sharpen science case for an EIC
- organizers:

D. Boer, M. Diehl, R. Milner, R. Venugopalan, W. Vogelsang

assisted by 12 physics coordinators (\rightarrow next slide)

program website:

http://www.int.washington.edu/PROGRAMS/10-3

- transparencies of talks (plus podcasts in some cases)
- Iinks to wiki pages of working groups
- proceedings (hopefully soon)

M.Diehl

Working groups and physics coordinators

• The origin of nucleon spin

D. Hasch, M. Stratmann, F. Yuan

• The spatial structure of QCD matter

M. Burkardt, V. Guzey, F. Sabatié

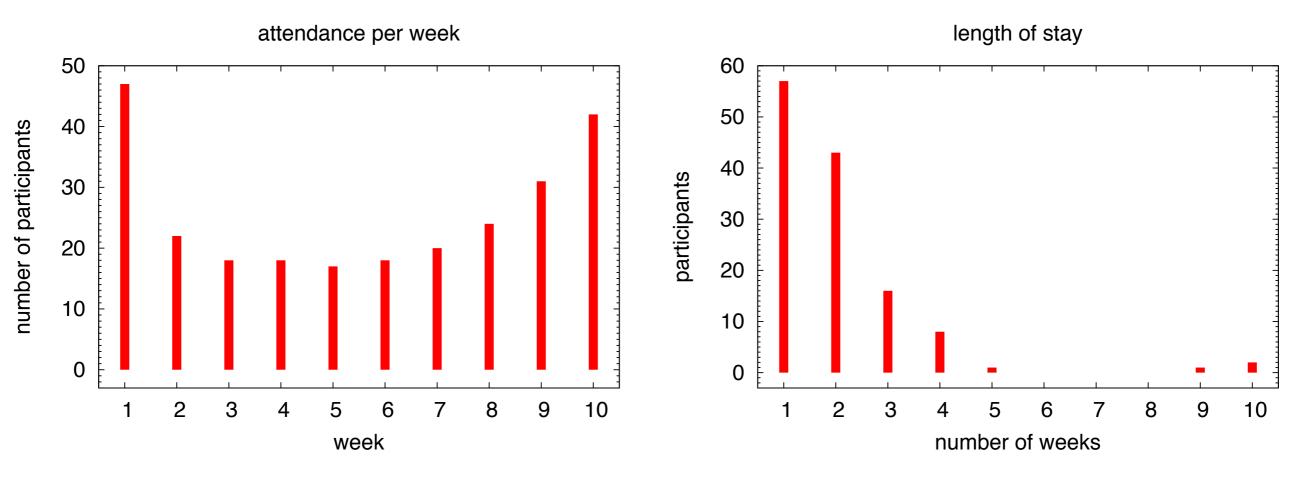
QCD matter under extreme conditions

A.Accardi, M. Lamont, C. Marquet

• Beyond the Standard Model / Electroweak physics

K. Kumar, Y. Li, W. Marciano

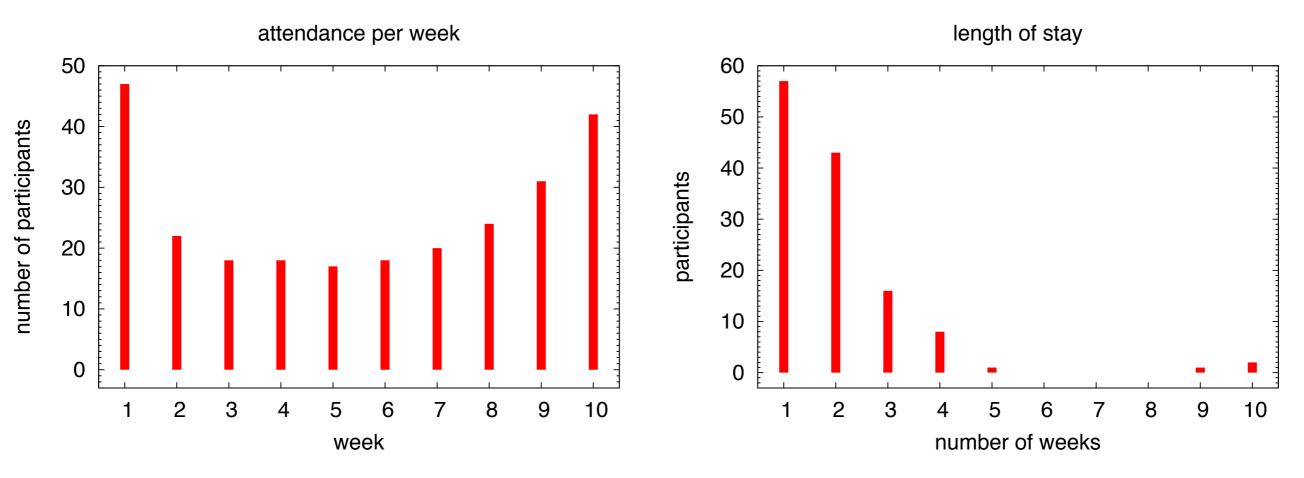
- tasks:
 - ★ contact with participants, timetable of talks
 - ★ lead discussion sessions
 - ★ collect and edit proceedings contributions
- thanks already now for their work


Topics and timetable

00	Gluons and the quark sea at high energies				
	p://www.in	t.washington.edu,	/PROGRAMS/10-3/ 😭 🗙	Google	• 🐠
Gluons and the quark sea at high +					=
	week	dates	topics		
	1	13–17 Sept	Workshop on "Perturbative and Non-Perturbative Aspects of QCD at Collider Energies" <u>Agenda</u>		
	2	20–24 Sept	open conceptual issues: factorization and universality, spin and flavor structure, distributions and correlations <u>Agenda</u>		Π
	3–5	27 Sept -15 Oct	small x, saturation, diffraction, nuclear effects; connections to p+A and A+A physics; fragmentation/hadronization in vacuum and in medium Agenda for week 3 Agenda for week 4 Agenda for week 5		
	6–7	18–29 Oct	parton densities (unpolarized and polarized), fragmentation functions, electroweak physics <u>Agenda for week 6</u> <u>Agenda for week 7</u>		
	8–9	1–12 Nov	longitudinal and transverse nucleon structure; spin and orbital effects (GPDs, TMDs, and all that) <u>Agenda for week 8</u> <u>Agenda for week 9</u>		
	10	16–19 Nov	Workshop on "The Science Case for an EIC" Agenda for week 10		
	<u> </u>				▲ 死

- opening and closing workshops
- 8 program weeks: 2 to 3 talks per day, discussions, weekly "wrapups"

M.Diehl


Attendance

- 128 participants, 31 came to Seattle twice or more
 - significant interest and willingness to contribute
 - extraordinary effort by INT staff: thanks
 - thanks to BNL and JLab for supporting their own participants

M.Diehl

Attendance

- 128 participants, 31 came to Seattle twice or more
 - but: most participants have many other commitments
 - a number of studies would gain from increased manpower
 - this is not a time to "sit back and relax"

M.Diehl

Proceedings

- will be pubished jointly by BNL, INT and JLab
- hardcopies and online version (to be put on the arXiv, INT website, etc.)
- status:
 - have 90% to 95% of contributions
 - several studies initiated at INT, completed for proceedings
 - coordinators are editing (shorten document to ~ 500 pages)
 - hope to have online version ready by beginning of May
- individual contributions combined into coherent chapters (not a collection of all program talks)

Proceedings outline

- chapters on the main physics topics:
 - The spin and flavor structure of the nucleon (polarized and unpolarized parton densities)
 - Three-dimensional structure of the nucleon and nuclei: transverse-momentum distributions
 - Three-dimensional structure of the nucleon and nuclei: spatial imaging (exclusive processes, GPDs)
 - QCD matter under extreme conditions (saturation, parton distributions and hadronization in nuclei)
 - electroweak physics (weak mixing angle, $e \rightarrow \tau$ conversion)
- shorter chapters on
 - input from lattice QCD
 - experimental aspects: accelarator and detector designs interplay between key mesurements, kinematics, detectors, IP design

Making the case for an EIC

- what are the main physics questions we want to study? how do they fit into a broader context?
- how can they be studied with the proposed facility?
- why not elsewhere (HERA, pp, AA, ...)

two aspects, in my view complementary:

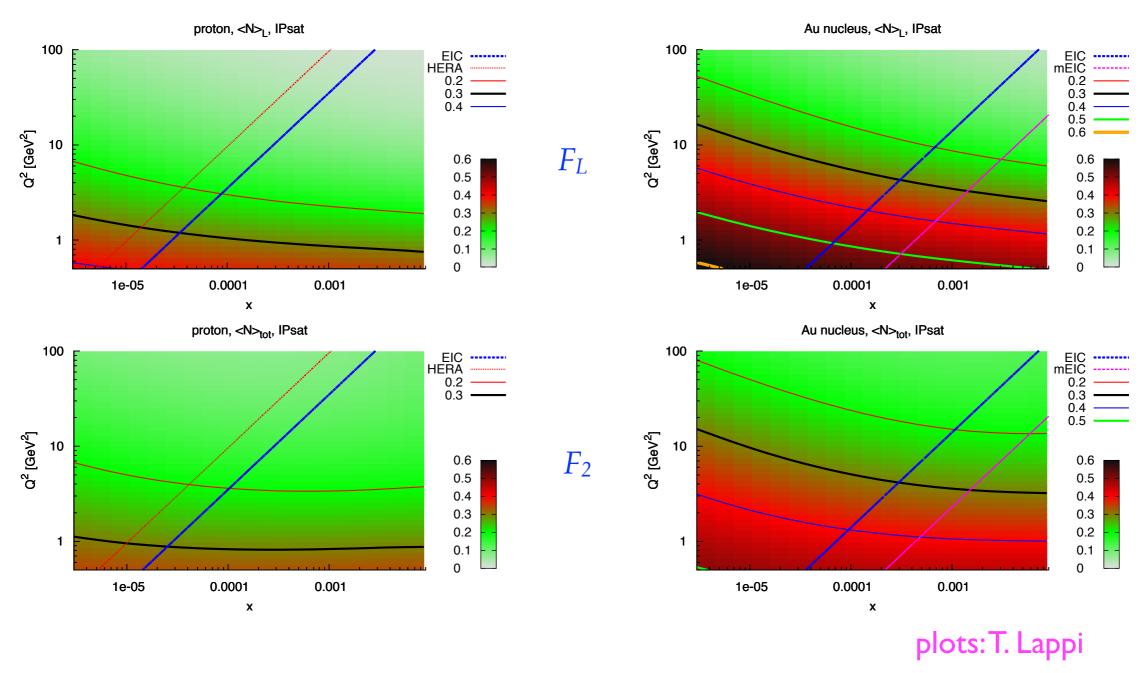
- broad physics program, many different aspects
 - attract and unite a large community
 - make best use of proposed facility
- select a few measurements as "flagships" → golden measurements
 - make physics case concrete, easy to grasp
 - driving requirements for accelerator and detector
 - document that are experimentally feasible (studies deserving priority)

- → interest
- → performance
 - → uniqueness
- \rightarrow golden topics

Some physics highlights

(a personal selection)

more in the following talks



Small x and saturation

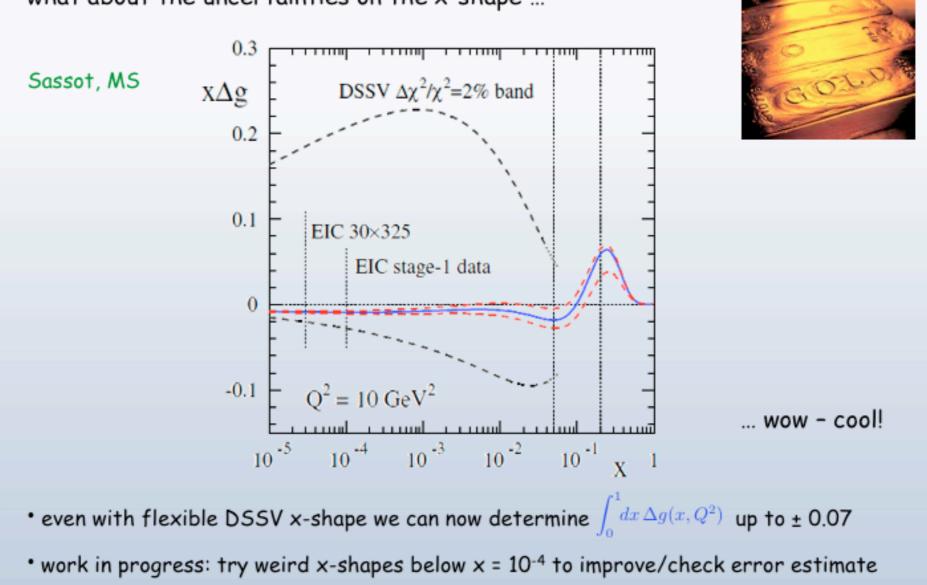
- physics dominated by gluon self-coupling: "essence" of non-Abelian gauge theory
- highest gluon density \rightarrow saturation scale Q_S large \rightarrow saturation at weak coupling (but stronly non-linear)
- golden measurement: *F_L* for heavy nuclei
 - among simplest observables, benchmark for theory
 - precision: higher-order corrections known in DGLAP approach, should be known for BFKL/BK by time of EIC
 - how sensitive to saturation?
 - ★ calc. average dipole scattering amplitude $\langle N \rangle$ in F_L and in F_2 (for comparison)
 - ★ limited to $\langle N \rangle < 0.5$ for Gaussian b space profile, to $\langle N \rangle < 0.75$ for hard sphere

INT program overview

Small x and saturation

- EIC: E_p = 300 GeV, E_A = 130 GeV/nucleon, E_e = 30 GeV
- mEIC: $E_A = 130 \text{ GeV/nucleon}, E_e = 5 \text{ GeV}$
- always cut *y* < 0.9

M.Diehl


Small x and saturation

- F_L measurement not for free:
 - \star different sets of beam energies, lever arm in y
 - ★ QED radiative corrections: at high *y* huge for heavy nuclei (from elastic *eA* scattering with radiation of extra photon)
 → need suitable cuts, implications for detector design
 → work in progress
 E. Aschenauer and H. Spiesberger
- detailed study of saturation \rightarrow more measurements
 - ★ k_T distribution of gluons \leftrightarrow saturation scale Q_S
 - → dihadron production $eA \rightarrow e h_1 h_2 + X$ azimuth between h_1 and $h_2 \leftrightarrow$ gluon $k_T \rightarrow talk C.$ Marquet
 - ★ diffraction: $eA \rightarrow e J/\Psi + A$ (coherent) or $\rightarrow e J/\Psi + X$ (incoherent)
 - coherent part very difficult to measure for heavy A no consensus yet whether physics gain high enough

Parton distributions

• golden measurement for spin physics: Δg from scaling violation of g_1

what can be achieved for Δg ? – cont'd

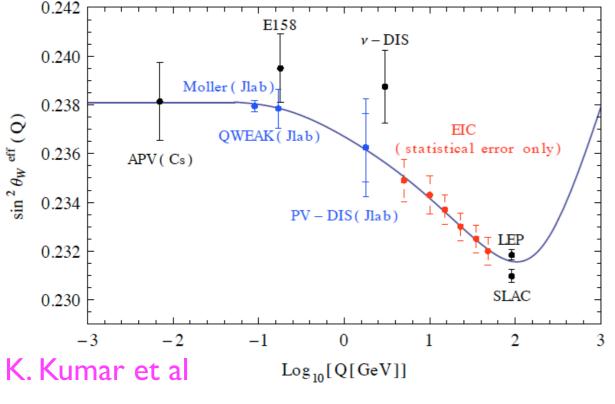
what about the uncertainties on the x-shape ...

M.Stratmann INT week 10

M.Diehl

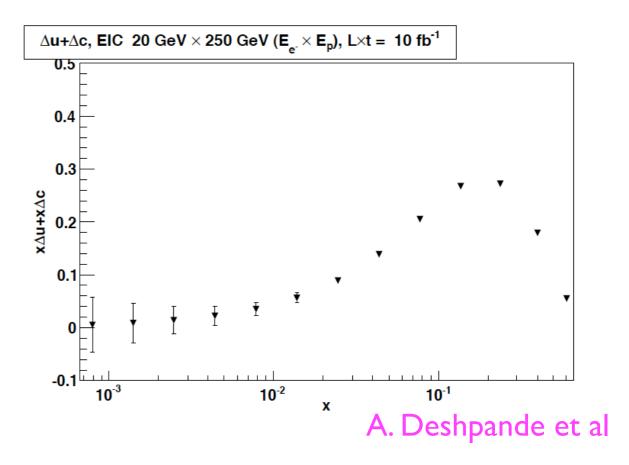
Parton distributions

• SIDIS with kaons: $s \text{ and } \overline{s}$ in nucleon $\rightarrow \text{talk M. Stratmann}$


least known part of proton flavor structure

- unpolarized: relevant for W, Z, H^{\pm} prod'n at LHC
- polarized: spin sum rule w/o assuming flavor SU(3)
- nuclear quark and gluon distributions $\rightarrow F_2$ and F_L
 - poorly or not known in large part of (x, Q²) plane
 → kinematic reach of EIC
 - input for heavy-ion physics
- some may not be golden but rather silver measurments: significantly enrich physics scope of EIC

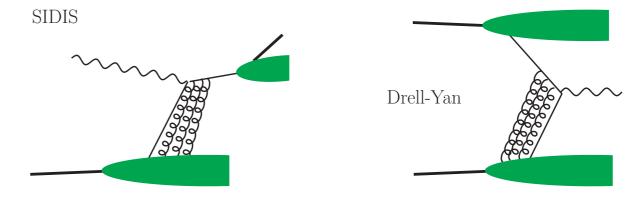
Electroweak DIS


studies at INT \rightarrow disadvantage from lower Q² than HERA more than compensated by gain in luminosity

• beam spin asymmetry in DIS $\rightarrow sin^2 \vartheta_W$

- for \sqrt{s} = 140 GeV and 200 fb⁻¹
- stat. errors ~ 0.25%
 sytematics remain to be studied

polarized $p \rightarrow$ alternative access to helicity distributions

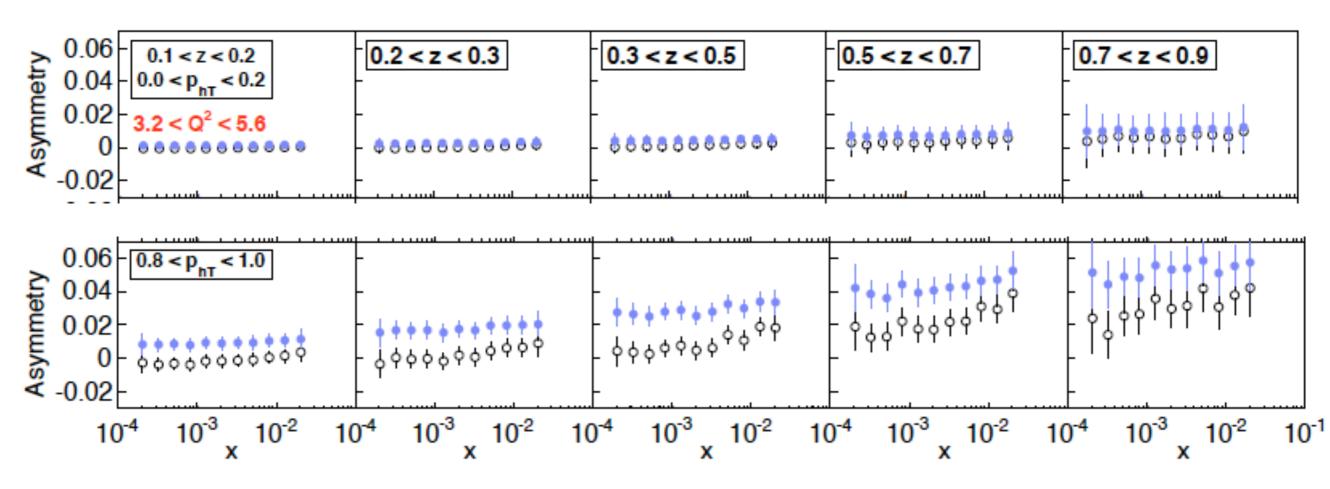


- find CC more promising than NC
- stat. errors only, syst. to be studied

M.Diehl

Three-dimensional structure: transverse momentum

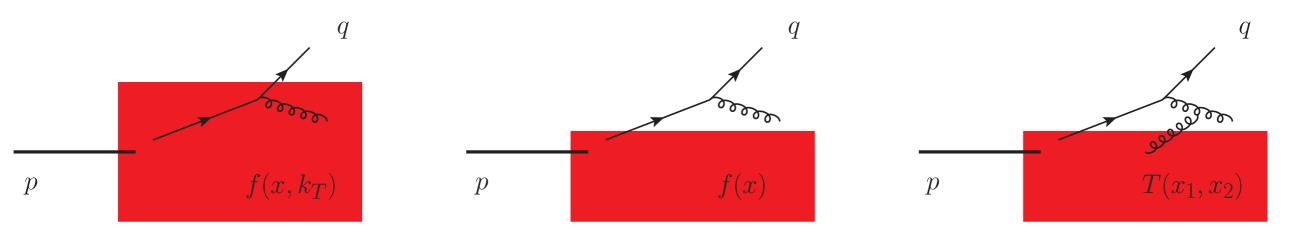
- transverse momentum of quarks and gluons:
 - influences momenta in final state \rightarrow practical relevance
 - fundamental aspect of hadron structure
 - correlations with flavor structure largely unexplored
- correlation of k_T with polarization reveals deep properties of QCD: Sivers effect as a golden measurement



- partons are not isolated but embedded in environment of gluons
- Sivers distribution = indicator for this effect changes sign between SIDIS and DY (RHIC measurements)
- Sivers distribution essentially unknown for sea quarks and gluons

M.Diehl

Transverse parton momentum


• Iuminosity and kinematic reach at EIC \rightarrow explore effects as fct of x, z, Q^2 and p_T T. Burton et al

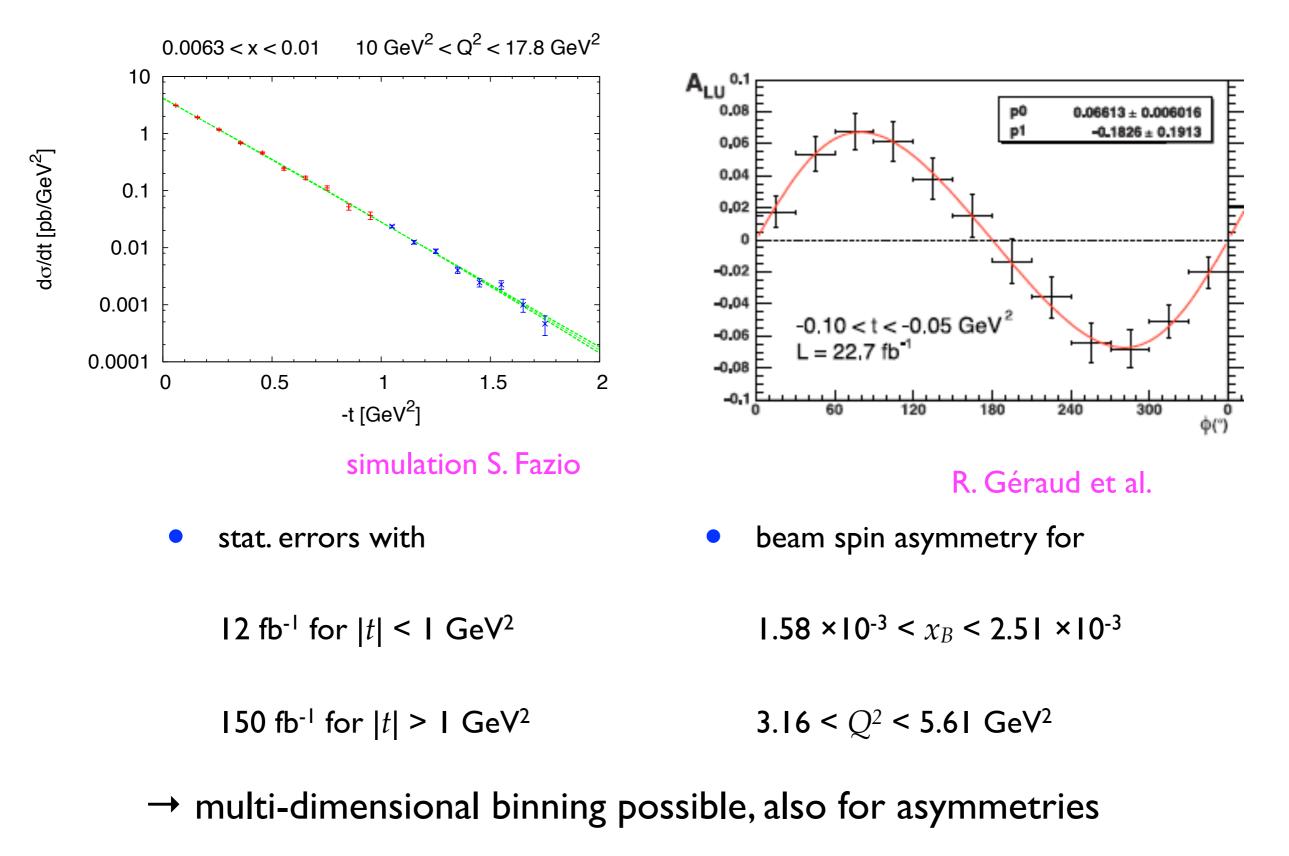
- blue (white) dots for (non)zero Sivers function
- stat. errors for \sqrt{s} = 140 GeV and 4 fb⁻¹

Transverse parton momentum

• higher $p_T \rightarrow$ transverse momentum generated perturbatively have smooth transition between "intrinsic" and "radiative" k_T

- need kinematic reach and rates of an EIC to explore
- Sivers effect at high $p_T \rightarrow \text{twist-three}$ distributions
- Sivers effect is one of several spin/angular asymmetries, each with characteristic physics \rightarrow silver measurements
 - in particular: chiral-odd distributions, i.e. transverse quark polarization → talk H. Gao

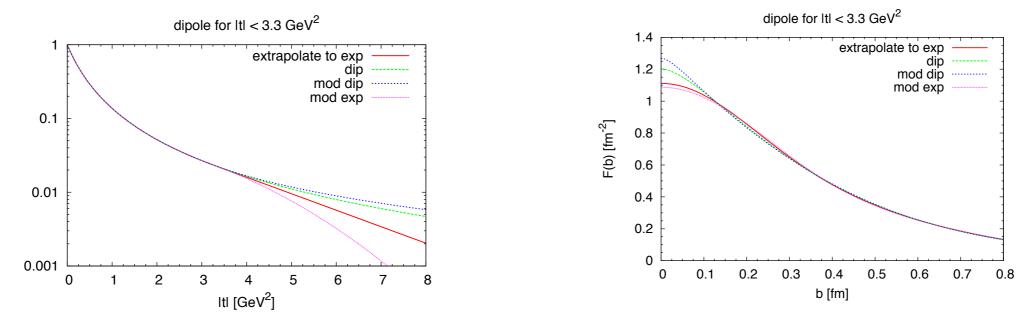
M.Diehl

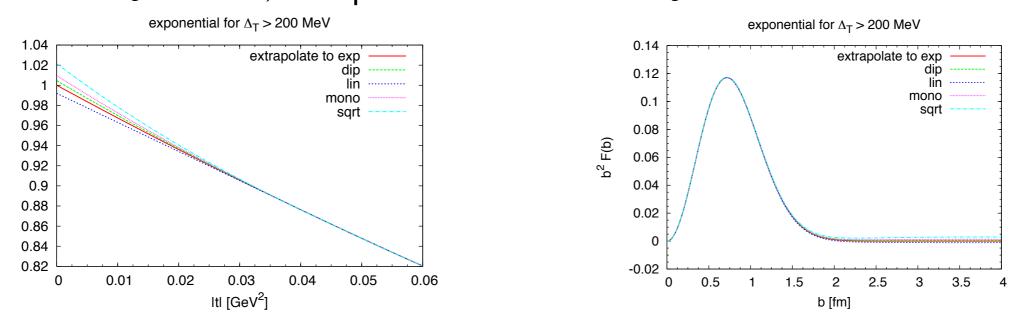

Three-dimensional structure: parton imaging

- transverse mom. transfer Δ_T in hard exclusive processes
 - \rightarrow transverse position b of parton (via Fourier transform)
- physics aspects:
 - spatial extension of hadrons \leftrightarrow confinement
 - interplay between sea quarks and gluons
 - large b behavior \leftrightarrow chiral dynamics

p virtual *π*

- golden measurements:
 - DVCS (accurate theory for large number of asymmetries)
 - $ep \rightarrow e J/\Psi + p$ (selective to gluons)


DVCS


M.Diehl

Transverse imaging

• estimate uncertainty in b space from incomplete measurement in Δ_T E. Aschenauer, M.D.

• measure p in Roman pots for $\Delta_{Tmin} < \Delta_T < I \text{ GeV}$, in main detector for $\Delta_T > I \text{ GeV}$, extrapolate for unmeasured Δ_T

implications for design of detectors and interaction point

M.Diehl

Transverse imaging

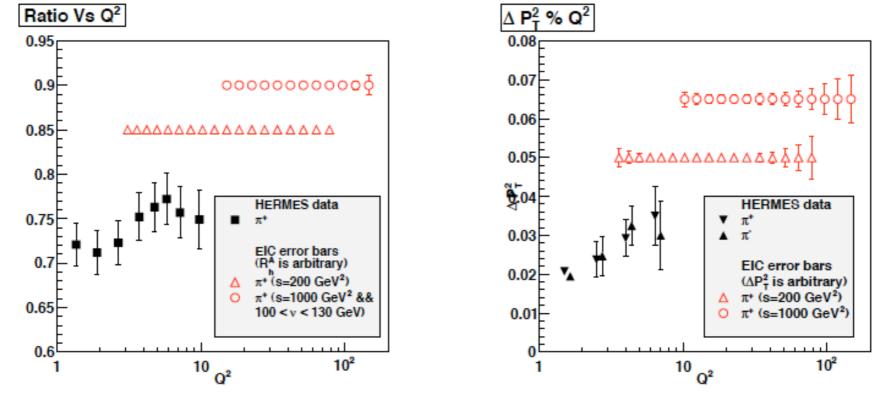
transverse proton polarization

orbital angular momentum (Ji's sum rule)

connection with Sivers effect (chromodynamic lensing)

need more theory work and simulations, no conclusions yet

silver measurements:
 production of light vector or pseudscalar mesons


disentangle quark flavors and quarks vs. gluons

Hadronization in nuclei

• key observables:

• attenuation ratio
$$R_A = \frac{N_A^{\text{SIDIS}}/N_A^{\text{DIS}}}{N_d^{\text{SIDIS}}/N_d^{\text{DIS}}}$$

- transverse-momentum broadening $\Delta \langle p_T^2 \rangle = \langle p_T^2 \rangle_A \langle p_T^2 \rangle_d$
- luminosity and kinematic reach at EIC \rightarrow multidimensional studies, wide range in Q^2 , $p_{T_r} v$

A. Accardi, R. Dupré

stat. errors for 200 fb⁻¹

M.Diehl

Summary

- for several topics identified golden measurement candidates
 - ★ clear physics interest
 - ★ performance studies initiated
- second tier of silver measurements
 - **broaden physics case, connect with other domains**
- with luminosity and kinematics of current accelerator/detector designs
 - many measurements possible with multi-dimensional binning including exclusive processes
 - ★ electroweak DIS possible
 - ★ many measurements will be systematics limited
 - detailed detector studies/simulations required
- open questions/to-do items identified

Thanks to all participants of the INT program for their input

special thanks to E.Aschenauer, H. Gao, Y. Li, C. Marquet, M. Stratmann, R. Venugopalan, B.-w. Xiao for discussions