Fragments in elC S.White 6/5/10

* Forward physics at colliders

http://arxiv4.library.cornell.edu/abs/1003.4252

http://indico.cern.ch/conferenceDisplay.py?confld=94115

*measurement of fragments

*Experience from RHIC/LHC

*the machine

"Diffraction at elC"

R. Glauber, 1955 "free dissociation" of deuterons

R. Hofstadter, 1953 the electron scattering method for nuclear or proton structure

first (and possibly only) calculation of diffraction dissociation

CARBON 187 MEV

very precise measurements of e to insure coherence

Coherence tag is critical for several elC measurements

Incoherent is a non-negligible background

components of Fragmentation

- * Gammas. Few MeV in nucleus frame->100-400 MeV in Lab. ~10 mrad in lab frame.
- neutrons. Several components to momentum distribution in HI.
 evaporation, Fermi step or Feshbach-Huang, tail due to SRC.
- protons, deuterons. None observed.
 Mostly due to Coulomb barrier suppression

Gammas: there are lots of them

ENERGY LEVELS OF A = 21-44 NUCLEI (VII)

207

Ex [keV]	2J";2T	$ au_{\mathrm{m}}$	E _x [keV]	2J*;2T	$\tau_{\rm m}$ or Γ	E, [keV]	2J#;2T	$\tau_{\rm m}$ or \varGamma
0	5+	stable	7 997 /	9		9600.79	3	12 2 eV
843.76 3	1+	50 2 ps	8037 1	7	0.62 5 fs	9 599.2 14	3-	2.5 2 keV
1014.45 3	3+	2.15 10 ps	8043 2	(5+-9+)		9628.5 9	1 -	2.76 14 keV
2211.16	7+	38.4 9 fs	8065 2	(3, 5)*	$\hat{J} \times 29.8$ as	9634.59	5+	18 5 eV
2734.97	5+	12.9 18 fs	8097 1	5		9658 2		
2 982.00 5	3+	5.7 3 fs	8130 3	1+		9664.78	5+	24 8 eV
3004.2 8	9+	85 5 fs	8136 /	5		9664.8 20	1-	5.82 10 keV
3680.4 9	1+	7.8 17 fs	8 182.1 13	3-		9 692 3		
3956.8 4	3+	3.6 3 fs	8 287 1	9-		9715.98	3+	
4054.6 5	1-	10.6 18 fs	8 324 1	5+		9742 3		
4410.2 4	5+	1.7 2 fs	8 361 3			9762.88	5+	18 eV
4510.3 5	11+	320 20 fs	8 376 I	(3, 5)*		9796.3 9	7+	4 3 eV
4 580.0 8	7*	7.7 8 fs	8 396 I	11		9821.69	3+	18 eV
4811.6 5	5+	2.2 3 fs	8 408 3			9834.4 10	1 -	3.0 keV
5155.6 8	3-	3.3 4 fs	8420.710	(3, 5)+		9839.710	5	1.0 2 eV
5248.0 6	5+	< 6 fs	8 442 1	7	0.72 14 fs	9846.610	1+	210 eV
5419.99	9+	< 20 fs	8 490.3 12	5+		9867 3		
5432.8 10	7	10 3 fs	8 521 2	(1-7*)		9883 3		
5438.4 8	5-	8 6 fs	8 537 1	5		9893 2		
5 499.8 8	11+	< 10 fs	8 553.0 3	3		9921.99	3-	1.8 keV
5 550.9 5	5	3.8 7 fs	8 586 1	7		9930.4 9	1 -	1.35 keV
5 667.3 12	9+	16 4 fs	8 597.6 3	3-	0.56 4 eV	9941.39	7	
5751.6 10	1+	< 15 fs	8675 /	(7,9+)	$\hat{J} \times 185$ as	9953.0 16		
5 827.0 8	3-	< 30 fs	8 693 2	(9-13)		9955.510	3	
5 960.3 7	7	2.4 17 fs	8708.73	1+	7.6 6 eV	9960.39	5-	8 eV
6080.8 9	3	4.8 11 fs	8716.66			9962.8 9	5+	12 eV
6115.8 6	5		8732.2 5	7-	0.193 eV	9976.8 9	(5, 7)+	$11 2 f^{-1} eV$
6158.4 7	3-	< 20 fs	8753.6 6	5	1.05 /3 eV	9 990.8 9	7-	10 eV
6284.715	7+	7 3 fs	8774.2 6	5+	3.7 3 eV	9999.910	5	
6 462.8 13	5	1.12 /2 fs	8 804 /			10 008 3		
6477.39	7-	2.6 4 fs	8 825 3			10024.3 9	5+	35 eV
6512.2 //	9	14 3 fs	8 861 3			10075 3		

TABLE 27.4 Energy levels of ²⁷Al

partial list for Aluminum

Gammas: angular distribution in the lab

Neutrons. Evaporation component critical for diffraction in eA

we produced modified HIJING with critical aspects of fragmentation

Saturday, June 5, 2010

SNW, Mark Strikman, Tamas Csorgo, Massi Alvioli, Marton Vargyas

Leading neutrons basis of much physics in PHENIX and ATLAS

in pp

in Heavy nuclei

Forward Instrumentation @ion colliders

- * There are many challenges:
 - * space constraints
 - * @RHIC & LHC only 10cm for ZDC
 - * window to limit material-> rf impedence
 - * machine dictates field geometry
 - LHC dumps 200Watts into ZDC (>5Grad)
 PMT aging seen at RHIC (but not rad damage)

ATLAS ZDC's RHIC ZDC's but many overcome @ RHIC&LHC

* we achieved excellent results for EM and Hadronic showers in both

Table 3.1: ZDC performance, 2 TeV showers $\sigma(E)/E$ $\sigma(r)$ $\sigma(t)$ neutron17%1.4mm100 psec

photon 7% 0.2mm 100 psec

 Surprisingly, ZDC is one of cleanest detectors in ATLAS ("signal energy" is orders of mag. above most bkg.). Unique 1arm van derMeer.

- In PHENIX the ZDC is key to triggering and analysis for EM processes (ie coherent J/ Psi)
- ALICE also installed a "proton ZDC" with good results.

* CDF BSC's may be a good way to extend rapidity coverage for tags.

Roman Potst

- used in HEP to measure protons at very small angles and when 1-x<0.05 (note acceptance is in narrow window at x=2.5 with ion beams)
- * several factors limit their relevance at an electron nucleus collider

+ (I worked with Roman Pots for 5 yrs on CDF)

pertinent factors:

- * nuclei don't evaporate protons (Coulomb barrier)
- * protons differ in magnetic rigidity by a factor of 2.5(A/Z) from the beam
 - * they don't get into the beamline
 - * the dispersion in a realistic accelerator beamline kills them
- * impact on rf impedence
- * sensors too sensitive for nuclear beams

* pots usually in dedicated runs

this location has highest rf impedence at RHIC ("rf cavity)

impedence minimized by lining it with rf screens

Atypical RHIC dispersion function exceeds 0.5 meters (not sure which lattice this one is) Seven a 2.5(A/Z)*0.5m radius aperture would be a very expensive accelerator

if you look for hit in a silicon detector in forward direction you usually find one at an ion collider

for some physics it would be useful to measure protons- particularly with large xF coverage. PHENIX did this successfully with a hadron calorimeter

magnet elements around ip determine possible measurements this shows RHIC geometry which is a good one for fragment measurement

Fig. 11-7. Beam crossing geometry (magnetic lengths are shown).

position of fragments from process 1)

eRHIC designs have smaller bend angle than RHIC

[~]4 mrad

9 5, 2010

IR geometry, magnetic field determine possible forward coverage.

Consider forward 10 mrad cone (black circle) containing most of fragmentation neutrons and ~1/2 of gammas:

* there is a lot of interesting physics with fragments

* proper integration of machine design with detector challenges clearly worth the effort.