Calorimetery for EIC detector

S. Stepanyan (JLAB) EIC detector Workshop, June 4 & 5, JLAB

Physics requirements to EM calorimeters

- □ Electron-forward Electromagnetic Calorimeter (EFEC)
 - electron identification, should have enough radiation length to absorb up 10 GeV EM showers
 - □ fine granularity close to the beam
- Central Barel Electromagnetic Calorimeter (BEC)
 - electron identification, p < 6 GeV</p>
 - □ $\pi^0 \rightarrow \gamma \gamma$ identification, p < 5 GeV
 - □ should be compact (tight space) and insensitive to high magnetic field
 - □ should have fine granularity (distance from IP ~3 m) and high resolution (~4 %)
- □ Ion-forward Electromagnetic Calorimeter (IFEC)
 - electron-hadron (jet) separation (together with HC), p < 5 GeV</p>
 - □ $\pi^0 \rightarrow \gamma \gamma$ identification, p ~10 GeV
 - □ should have fine granularity (distance from IP ~4 m) and high resolution (~4 %)

 $\theta e^{+/-}$ (degrees)

Choices for calorimeters

Homogenous calorimeters

- Based on dense materials that are also active in generating the signal
- Archetype is the crystal calorimeter
 - Scintillating crystals (BaF2, PbWO₄, Csl, LYSO)
 - Cherenkov radiators (Pb-glass)
- Almost without exception used for EM calorimetry

Sampling calorimeter

- Layers of inactive, dense material (e.g. Pb, W, U) mixed with active layers
- Active layers can be
 - Scintillators (plates or fibers) or Cherenkov in SiO_2 fibers
 - Silicon strips
 - Cryogenic noble liquids (Ar, Kr)
 - Gaseous detectors
- The technology for HCAL, but also used in ECAL

Photom Detectors at LHC The second s												
Exp.	ATLAS		C	MS	ALICE							
Name	LAr Barrel	LAr Endcap	ECAL(EB)	ECAL(EE)	PHOS	EMCal						
Structure	Liquid Ar		PWO + APD		PWO + APD	Pb + APD						
Coverage	0< η <1.4, 2π	1.4< η <3. 2, 2π	0< η <1.5, 2π	1.5< η <3.0, 2π	0< η <0.12, 0.6π	0< η <0.7, 0.6π						
Granularity ΔηxΔφ	0.003x0.100 0.025x0.025 0.025x0.050	0.025x0.100 0.025x0.025 0.025x0.050	0.0174x0.0174	0.0174x0.0174 to 0.05x0.05	0.004×0.004	0.0143x0.0143						
Res.	10%/√E⊕ 0.5%	10%/√E⊕ 0.5%	2.7%/√E⊕ 0.55%	5.7%/√E⊕ 0.55%	3.3%/√E⊕ 1.1%	7%/√E⊕1.5%						

S. Stepanyan EIC detector workshop, June 4 & 5, 2010, JLAB

Calorimeters at JLAB

Homogenous calorimeters

- Pb-glass Hall A and C, Primex (Hall B) $\sigma/E=6\%/\sqrt{E}$
- $PbF_2 Hall A DVCS, \sigma/E=4\%/\sqrt{E}$
- PbWO₄ Hall B, DVCS (APD readout, high magnetic field), σ /E=4.5%/ \sqrt{E} and Primex (PMT readout), σ /E=2.5%/ \sqrt{E}

Sampling calorimeter

- Pb-scintillator plate sandwich Hall B, $\sigma/E=10\%/\sqrt{E}$
- Pb-scintillating fibers Hall D (SiPM readout, high magnetic field), $\sigma/E=7\%/\sqrt{E}$

EFEC

- □ Area to cover ~40 m² (similar to CLAS)
- The most economical solution leadscintillator sandwich
 - Extruded scintillators with WS fiber readout (CLAS12 PCAL)
 - Will provide required hermeticity and needed granularity
 - **Expected energy resolution** $\sigma/E=10\%/\sqrt{E}$
- Somewhat better resolution can be achieved with "shashlyk" type configuration, used in ALICE, LHCb (LHC), HERA-B (DESY), PHENIX (RHIC), PANDA (GSI)

S. Stepanyan EIC detector workshop, June 4 & 5, 2010, JLAB

BEC

- Area to cover ~30 m²
- Should be compact (tight space) with a photodetector insensitive to magnetic field
- Logical choice crystal calorimeter, such as PbWO4, with APD (CLAS, CMS, PANDA) or SiPM readout

S. Stepanyan EIC detector workshop, June 4 & 5, 2010, JLAB

panda

Optimization of the PbWO4 and increase of the light output

Optimization of the PbWO₄ (collaboration RINP, Minsk and the manufacturer BTCP at Bogoroditsk, Russia)

- -reduction of defects (oxygen vacancies)
- -reduced concentration of La-, Y-Doping
- -better selection of raw material
- -optimization of production technology

Development of the PWO-II : Light yield increased

S. Stepanyan EIC detector workshop, June 4 & 5, 2010, JLAB

Crystals for HEP calorimeters

Crystal	Nal(TI)	CsI(TI)	Csl(Na)	Csl	BaF ₂	CeF ₃	BGO	PWO(Y)	LSO(Ce)
Density (g/cm³)	3.67	4.51	4.51	4.51	4.89	6.16	7.13	8.3	7.40
Melting Point (°C)	651	621	621	621	1280	1460	1050	1123	2050
Radiation Length (cm)	2.59	1.86	1.86	1.86	2.03	1.70	1.12	0.89	1.14
Molière Radius (cm)	4.13	3.57	3.57	3.57	3.10	2.41	2.23	2.00	2.07
Interaction Length (cm)	42.9	39.3	39.3	39.3	30.7	23.2	22.8	20.7	20.9
Refractive Index ^a	1.85	1.79	1.95	1.95	1.50	1.62	2.15	2.20	1.82
Hygroscopicity	Yes	Slight	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm) (at peak)	410	550	420	420 310	300 220	340 300	480	425 420	402
Decay Time ^b (ns)	245	1220	690	30 6	650 0.9	30	300	30 10	40
Light Yield ^{b,c} (%)	100	165	88	3.6 1.1	36 4.1	7.3	21	0.3 0.1	85
d(LY)/dT	-0.2	0.4	0.4	-1.4	-1.9 0.1	0	-0.9	-2.5	-0.2
Experiment	Crystal Ball	BaBar BELLE BE S III	-	KTeV	(L*) (GEM) TAPS	-	L3 BELLE	CMS ALICE PANDA	SuperB

a. at peak of emission; b. up/low row: slow/fast component; c. QE of readout device taken out.

S. Stepanyan EIC detector workshop, June 4 & 5, 2010, JLAB

IFEC

- Area to cover ~40 m²
- The most demanding in terms performance wide energy range of particles and requires high resolution
- **Challenge** $-\pi^0/\gamma$ separation, important DVCS/DVMP

- Crystal calorimeter continue BEC coverage
- Must find solution for near beam coverage

Near-beam calorimetry

- Challenges high density and high rate of outgoing particles (especially in ion beam direction) and high radiation
- 1 or 2 bit digital sampling calorimeter (IFEC/HC), e.g. W (absorber) with silicon readout
 - One can increase detector granularity and hence PFA performance while reducing cost.
 - □ Cheap, robust detectors suitable for the digital version exist and are very attractive: GRPC, µMEGAS, GEM...
- Quartz fiber calorimeter (IFEC/HC)
- Scintillating fiber tungsten powder calorimeter (EFEC)

Summary

- Challenges to EM calorimeters are not to demanding
- Many collider detectors solve bigger issues
- Solutions exist with today's technologies
- Future technologies might gave better handle on rates, coverage, triggering, resolution, integration with HCAL
- Some of challenges in PID can be solved combining ECAL and HCAL solutions (in particular IF detector)

Other options (HCAL)

- Novel multi-pixel Geiger mode photodiodes (SiPMs)
 - B-field proof, small, affordable
- High granularity with scintillator at reasonable cost
 - photo-sensors integrated
- Opens revolutionary design options:
 - embedded electronics and calibration system for minimal dead zones
 - thin readout gap
- Granular, compact, hermetic

S. Stepanyan EIC detector workshop, June 4 & 5, 2010, JLAB SCIENCE