
DAQ & Electronics for the CW Beam at Jefferson Lab

Benjamin Raydo

EIC Detector Workshop @ Jefferson Lab June 4-5, 2010

Goals for EIC Trigger

High Event and Data Rates

- Trigger must be able to handle high luminosities (and hadron multiplicities)
- Trigger rate depends on e-p interaction rate ($\mathcal{L}\sigma$), not bunch crossing frequency
 - events will be read out when trigger occurs
 - as in CLAS, the time reference is provided by tracking the electron (stable β =1 particle)

Other Requirements

- High efficiency for rare triggers and low electron energies
- Minimum-bias trigger with limited (if any) prescale for low-Q² events
- Random background suppression at levels 1 & 2 (track vertex reconstruction, etc)

Rate estimates

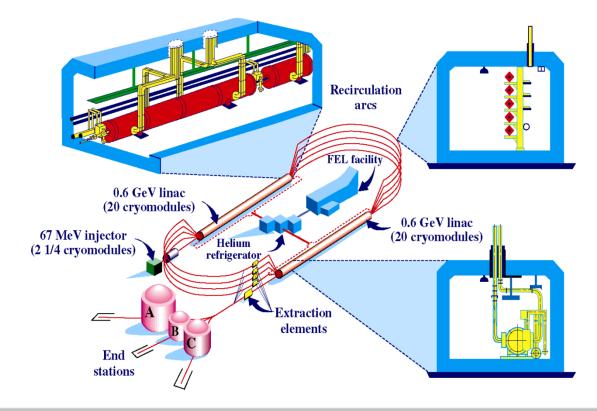
- H1/ZEUS at 5 x 10^{31} : < 1000 Hz @ level-1, 10 Hz @ level-3 to tape
- CLAS12 at 10³⁵: 10 kHz @ level-1 to tape (mostly π due to low Cerenkov thresholds)
- EIC at a $\sim 10^{34}$ (estimated): 100 kHz @ level-1, 10 kHz to tape

Implementation can be based on JLab 12 GeV trigger experience

- High-rate capability (200 kHz) from GlueX hadron trigger
- Advanced algorithms from CLAS12 trigger

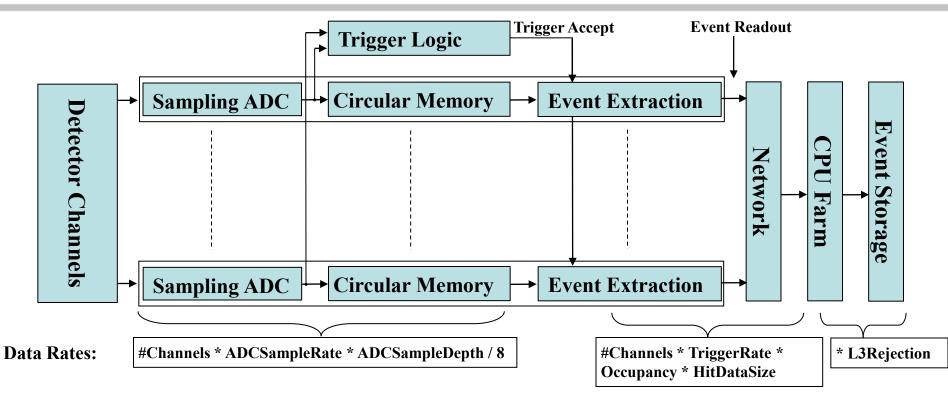
CW Trigger Talk Overview

- 1. JLab CW Accelerator Facility
- 2. Pipelined Trigger Overview
- 3. Pipelined front-ends: Flash ADC
- 4. Forming Triggers
- 5. Trigger Implementations at JLab

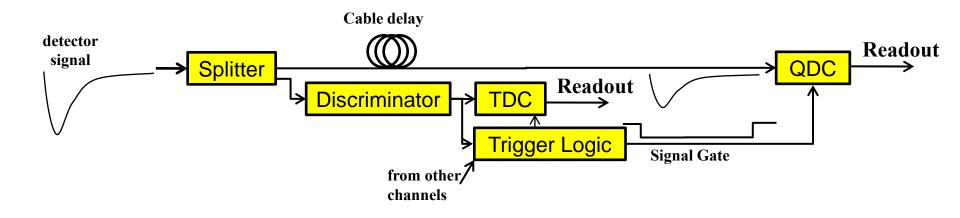


1.0 JLab CW Accelerator Background

CEBAF

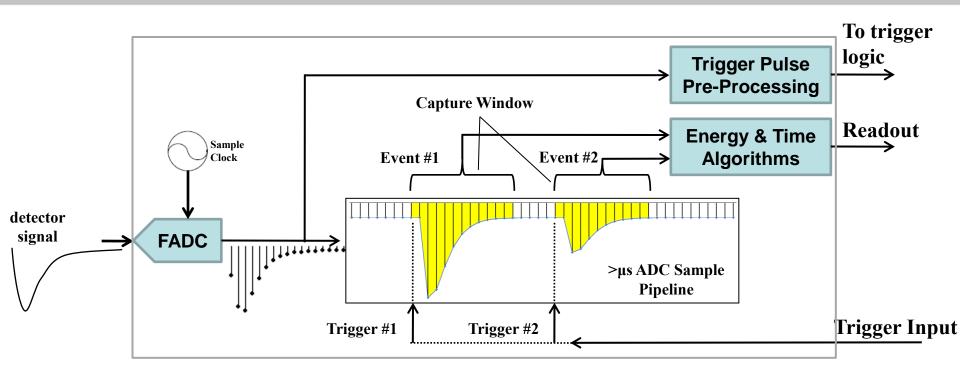

- Two recirculating Linacs operating at 1497MHz
- Three beams produced at the injector with 120 degrees of phase separation
- Beams delivered to three experimental halls at 499MHz

2.0 Pipelined DAQ & Trigger Architecture


- All channels are continuously sampled and stored in a short term circular memory

- Channels participating in trigger send samples to trigger logic. When trigger condition is satisfied, a small region of memory is copied from the circular memory and processed to extract critical pulse details such as timing & energy. This essentially makes the event size independent of ADC sampling rate, depth, and number of processed points.

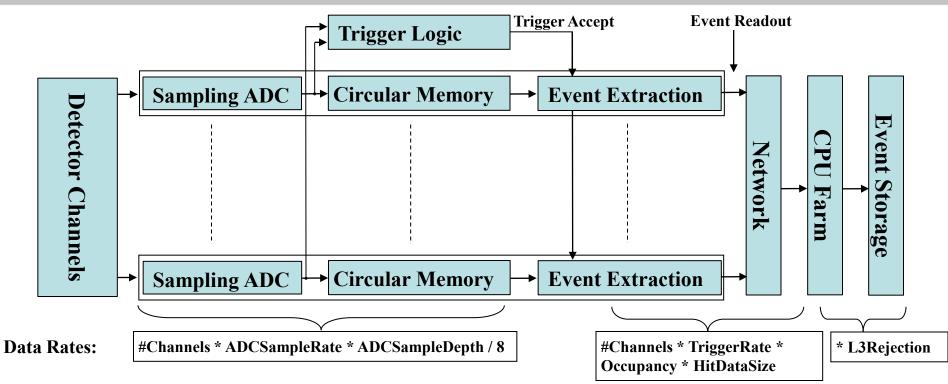
3.0 Traditional Method of Signal Capture



- Requires multiple modules to acquire time and/or charge
- Detector signals must be delayed to allow trigger decision time to form gate
- Very limited trigger logic resolution or very complex/expensive to build
- Gated readout modules typically have large conversion times, creating dead-time

3.1 Modern Method of Signal Capture

- Sampling Flash ADC stores digitized signal in large memory with trigger decision made
- Trigger input copies a window of the pipeline and extract pulse charge and time for readout
- Trigger output path contains detailed information useful for cluster finding, energy sum, etc.
- Hardware algorithms provide a huge data reduction by fitting and reporting only time


& energy estimates for readout instead of raw samples

Jefferson Lab

3.2 Pipelined DAQ & Trigger Architecture

For example, the Hall D GlueX Experiment we can calculate the following:

 $125Msps 12bit ADC: \sim 13,000 channels => 13,000 * 125,000,000 * 12 / 8 = 2.4375 TB/sec$

250Msps 12bit ADC: ~6,000 channels => 6,000 * 250,000,000 * 12 / 8 = 2.25 TB/sec

A total of ~5 TB/sec directly from detector. However:

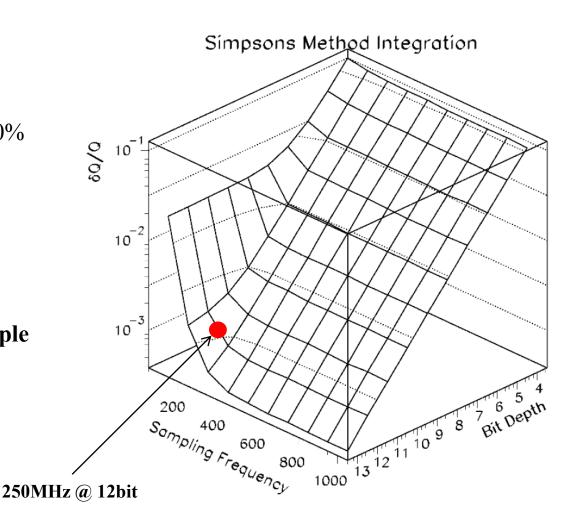
Expected trigger rate is <200kHz, Occupancy ~6%, HitChannelEventSize ~18bytes, L3Rejection ~10

Readout total of ~3GBytes/sec. Farm rejection factor 10 => ~300MBytes/sec to disk.

3.3 JLab Pipelined Flash ADC

- 16 Channel 12bit, 250Msps Flash ADC
- 8µs raw sample pipeline, >300kHz sustained trigger rate (bursts @ ~15MHz)
- Post-processing in customizable firmware to extract time, charge, and other parameters minimizing event size
- Module supports 2eSST VME transfers at 200MB/s transfer rate
- Large event block sizes (>100) to minimize CPU interrupt handling
- VXS P0/J0 outputs 5Gbps L1 data stream (hit patterns & board sum)
- Used in existing 6GeV program:

Hall A BigBite & Moller Polarimeter


3.4 FADC Sampling – Charge Accuracy

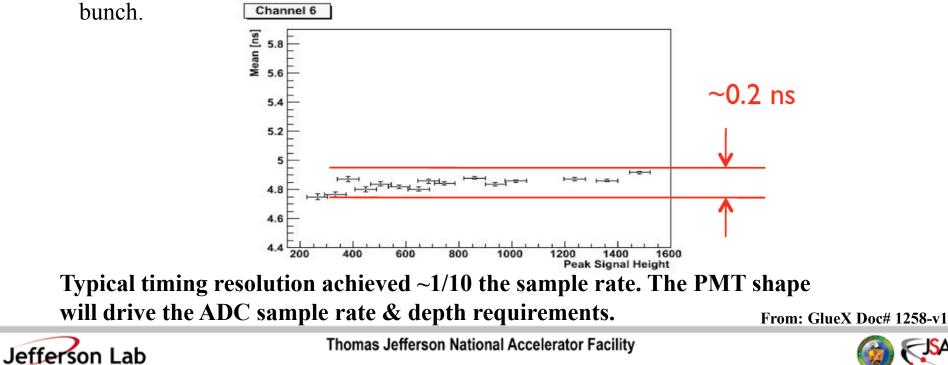
Hall D FCAL PMT: FEU 84-3

-10,000 Random height pulses 10-90% full scale of ADC range simulated

- Sampling frequency makes little difference beyond 250MHz at 12bit, providing ~0.1% charge resolution

- PMT pulse shape dominates sample frequency and bit depth of ADC

From: GlueX Doc# 425-v1


3.5 FADC Sampling – Timing Accuracy

Hall D FCAL PMT: FEU 84-3

- Timing algorithm developed & tested by Indiana University for the Hall D forward calorimeter.

- Implemented on the JLab FADC250 hardware achieving <300ps timing resolution on 50% pulse crossing time with varied signal heights.

- Resolution allow reliable information to link calorimeter with tagged electron

4.0 Forming Triggers

Rate = $\pounds x \sigma_T \sim 100$ kHz for EIC@JLab

- Bunch crossing rate of 1.5GHz and Interaction rate of ~100khz we get an **e-p interaction of interest every ~10⁴ bunch crossings**

- A trigger occurs when trigger condition is satisfied, which is computed asynchronously with bunch crossing.

- As in CLAS, the time reference is provided by tracking the electron (stable β =1 particle)

Hardware Triggering Options

Background suppression achieved by using advanced triggers:

- Calorimeter cluster finding (sliding window, cluster size & energy)
- Track reconstruction (Shift/sum methods, Hough transform, vertex finding)
- Geometrical matching between detectors

JLab is experienced in these types of trigger designs (6GeV and 12GeV trigger designs)

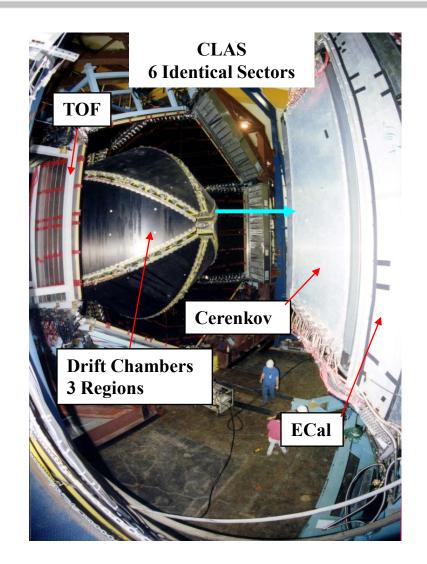
5.0 JLab Trigger Designs

Existing CLAS Trigger

- 5.1 CLAS detector overview
- 5.2 CLAS global trigger design
- 5.3 Inner Calorimeter cluster finding

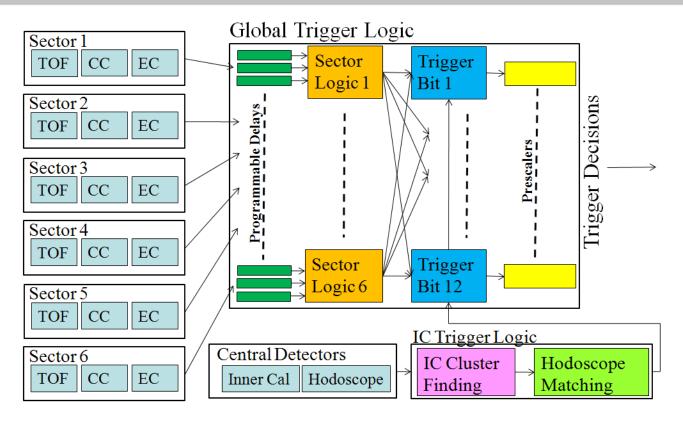
12GeV Pipelined Trigger Designs

- 5.4 12GeV Pipelined Trigger
- 5.5 GlueX Trigger
- 5.6 CLAS12 Trigger
- 5.7 CLAS12 Cluster Finding
- 5.8 Prototyped System



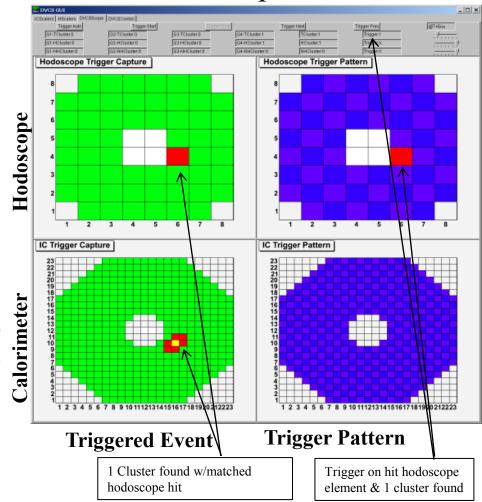
5.1 CLAS Detector & Trigger

• Photon & Electron Experiments with polarized targets, polarized beam


- High Luminosities a few x10³⁴cm⁻²s⁻¹:
- DAQ event rate designed to $\sim 10 \text{KHz}$
- FPGA based Level 1 Hardware
 - Pipelined design (5ns pipeline clock)
 - Low latency (~150ns)
- Fast Level 1 for ADC Gate, TDC Start
 - TOF, Cerenkov, Electromagnetic Calorimeter
 - Pattern recognition programming
 - Sector based logic for L1 trigger 'equations'
 - Cluster finding for Inner Calorimeter
- •Up to 32 Front End ROCs
 - Fastbus, VME, [TDC; ADC; Scalers]

5.2 Existing CLAS Trigger

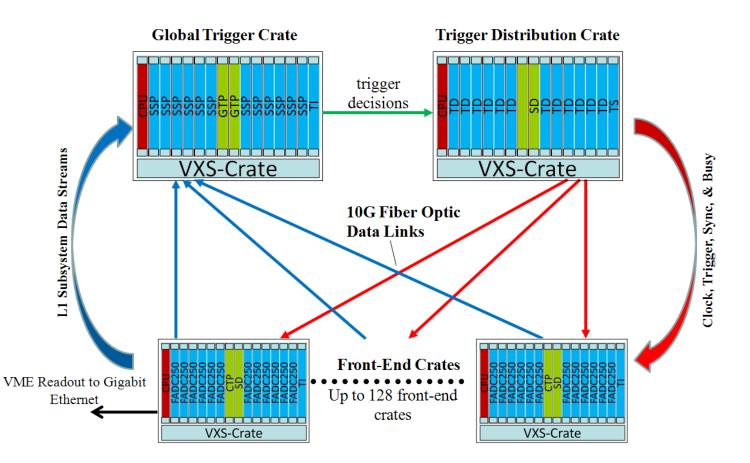
- Fast L1 trigger design for CLAS
- Sector based triggers combined with central detector information
- Very fast cluster finding trigger for Inner Calorimeter (IC)



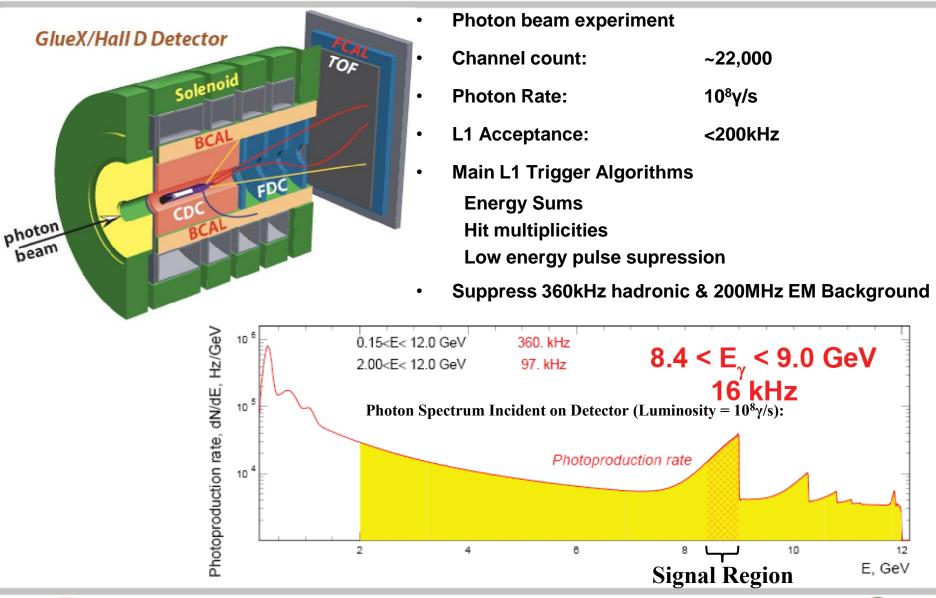
5.3 IC Cluster Finding Trigger

424 Tower PbWO₄ Calorimeter & 56 Channel Hodoscope

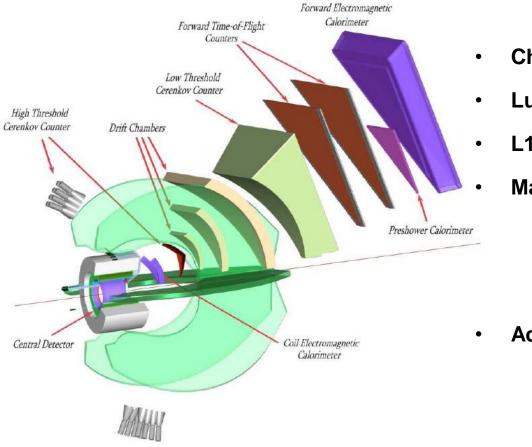
- FPGA based trigger finds all clusters within calorimeter by considering all possible views with a 3x3 "sliding" window
- Cluster decisions can optionally be geometrically matched with hodoscope
- Decision time ~85ns, 66MHz pipeline
- Trigger module has a parallel diagnostic trigger that allows arbitrary triggers to be setup for algorithm/channel/timing verification (does not interfere with data taking)



5.4 12GeV JLab Pipelined Trigger Design


- Designed for experiments at CLAS12 & GlueX
- 125/250MHz Flash ADC based front-ends
- >300kHz sustained trigger rate capable
- High speed L1 trigger system (heavily based on high speed serial links & large FPGA processing)

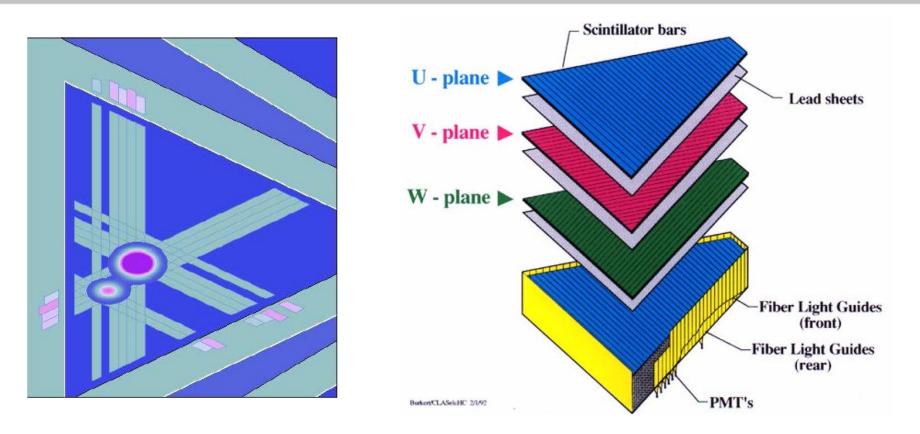
5.5 Hall D – GlueX Detector



Thomas Jefferson National Accelerator Facility

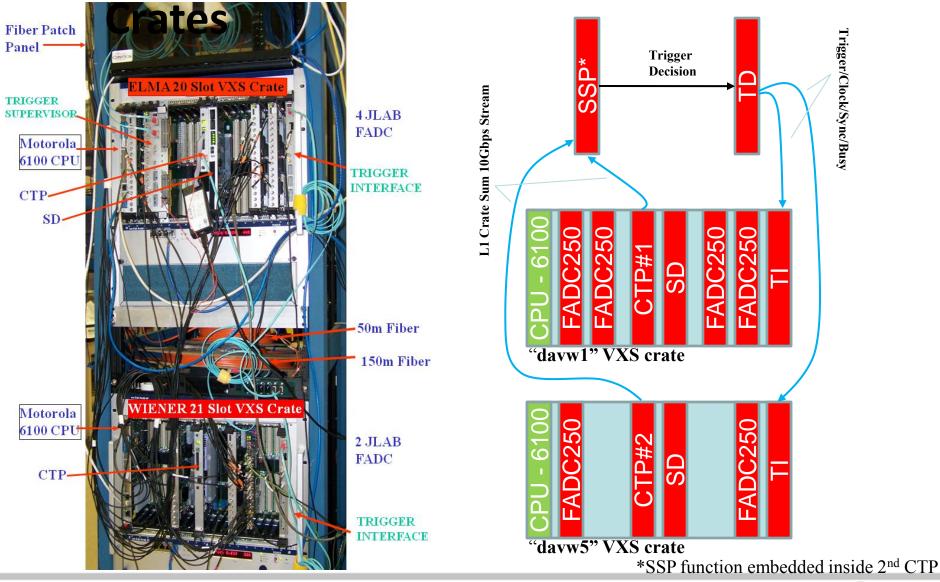
Jefferson Lab

5.6 CLAS12 Trigger Design



- Channel count: ~40,000
- Luminosity: ~10³⁴cm⁻²s⁻¹
 - L1 Acceptance: <20kHz
 - Main Trigger Algorithms: EC Cluster Finding DC Road Finding Geometric Matching Clusters & Tracks
- Advanced trigger supports: Reliable electron identification Multi-particle events

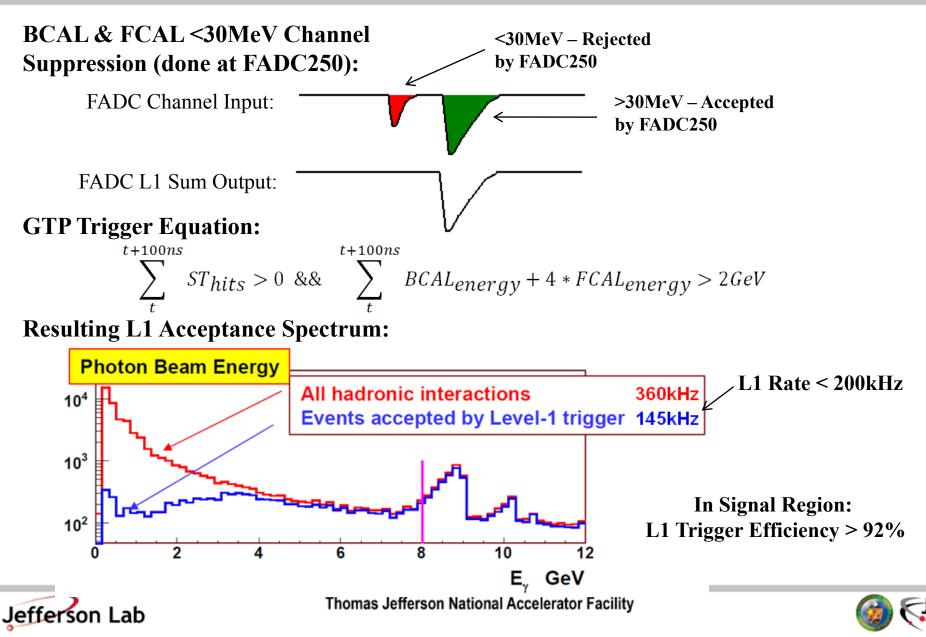
5.7 Ex: Forward Calorimeter Cluster Finding



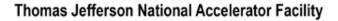
- Cluster reconstruction will be formed in L1 trigger and matched with drift chamber tracks on a per sector basis.

5.8 2 Fully Prototyped Front-End

Thomas Jefferson National Accelerator Facility


In Conclusion...

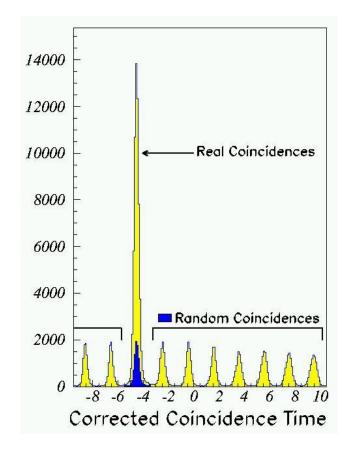
- EIC Triggering will need a modern trigger system & DAQ to support high trigger rates and suppress background events
- JLab 6GeV experience and 12GeV development address many issues surrounding high speed trigger development & advanced trigger support



GlueX Example L1 Trigger

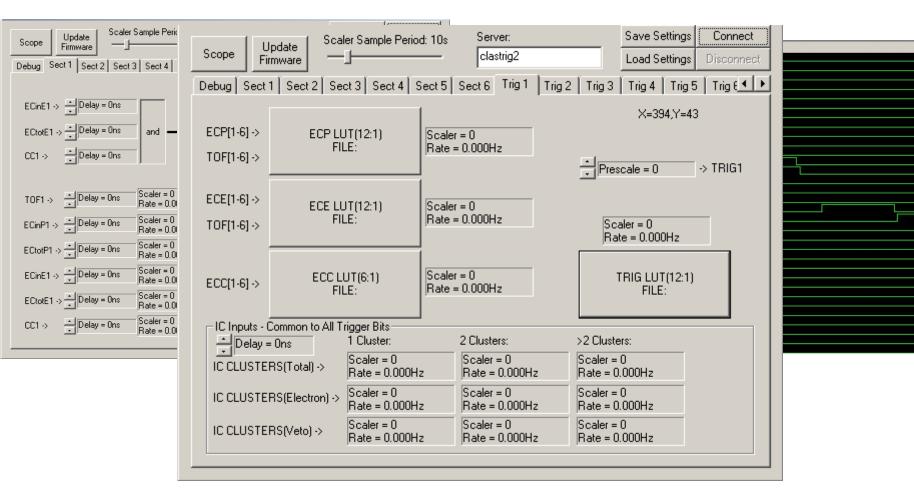
IC & Hodoscope Trigger Logic

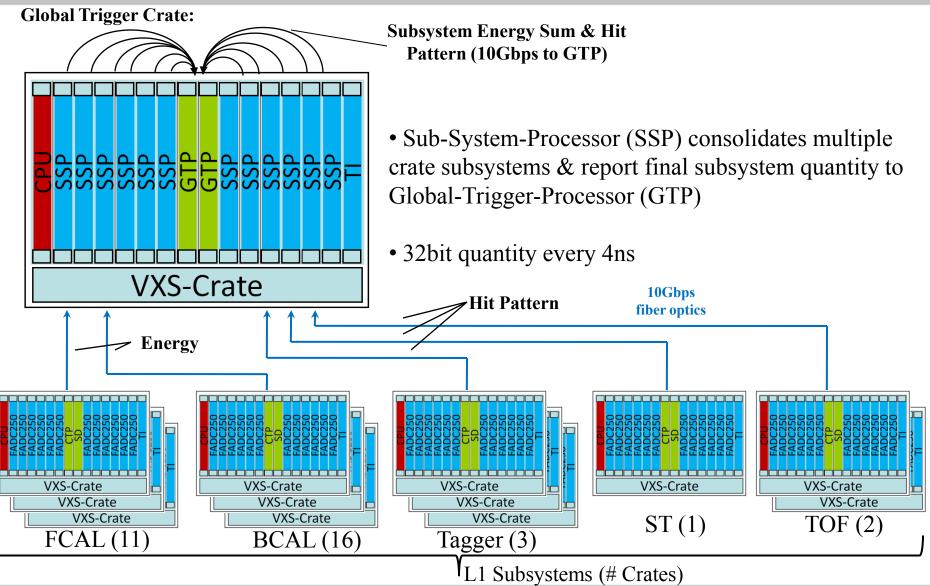
ers HScalers DVCSScontrol Update Scalers Z-Log On/Off ://			every 5sec							
Update Scalers Z-Log On/Off	111	IC Scale Entries 1. Mean x	ers .4739e+08 12.67							
21 791 811 898 1030 1252 1122 90 1371 1490 1208 1310 99	72 676 701 53 1023 916	Mean y RMS x RMS y 883	12.17 2.79 2.659							
20 784 1111 1071 1355 1507 1674 1626 1538 1898 2169 2040 1955 15<	74 1758 1432 93 1630 1608	1309 1108 970	700 848 643	10⁵						
6 680 853 1054 1351 1971 3143 3815 7461 353110 43000 26312 151622 203800 36381 16225 91 7.0 800 1340 1648 2437 4054 873 16275 78076 31133576853 36243423480441044 77601 233 4 830 1016 1295 1620 2633 5864 11961 51016 36399375559 (64358) 66978.847	00 4263 2441 035 9558 2864 2 782 10184 6002 1	2248 1589 1195 16037 1954 1242	842 654 1020 717 1023 721	10⁴						
13 589 1044 1277 2458 3057 6056 22943 14161052475 5 5 5779922 12 710 845 1086 1864 3581 6584 17120246767747251 5 5 41809429 11 857 1161 1309 1916 3101 6298 20709 209620579683 5 5 1159727 10 689 899 1311 2191 2867 5337 18045 13203368794550555 320118 320118 320118 07184 3	<u>U</u>	DVCSScope DVCs		Z-Log On/C	m	-	<u>ş</u>		every 10sec	
9 646 990 1080 1508 2156 3584 7611 19485 12896237426 128523 12524865 12824 12	8		13850	42297	38000	64496	43527	7479		10
501 712 953 1136 1412 1800 2432 1232 3051 3679 4685 7217 5991 3562 244 50 756 908 942 1255 1578 2029 1892 1550 1906 2190 2659 2589 2448 1 4	7	23850	54018	62096	114871	158853	46054	58315	23312	10
2 499 587 525 857 829 888 1119 1202 1168 936 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1	6		62037	145869	403146	513660	352301	92328	52282	10
	5		97880	840034 1.03086e+06			508782 704851	188671	44618 43650	10
	3		81535	234955	845601	549925	472973	119494	67711	10
	2	11411	33931	80374	122674	171241	152963	68492	45033	10
	1		21086	68935	68340	51921	56894	21770		1
		1	2	3	4	5	6	7	8	



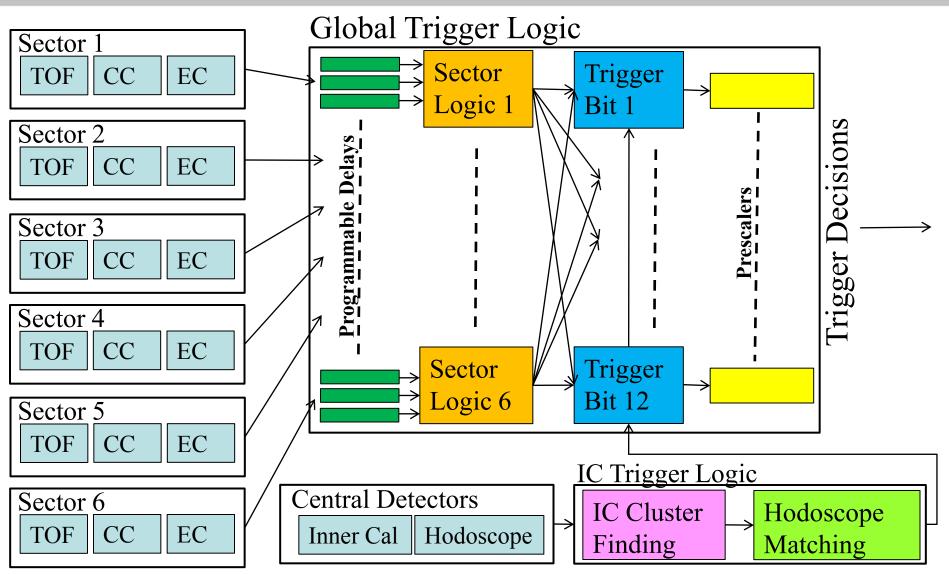
Jefferson Lab

Event Trigger


- A trigger condition will create a signal sent to all front-end modules to "readout" the event
- Timing resolution of event is resolved using high resolution TDCs and timing information received from ADC modules
- Triggered window/integration gate widths are much large than the bunch crossing time, so event data corresponds to multiple bunch crossings. Real event bunch crossing is easily distinguishable because of high resolution timing information
- CW beam creates random background which can be used to correct real event statistics


Global Trigger Logic

GlueX Trigger Subsystems



Thomas Jefferson National Accelerator Facility

5.2 Existing CLAS Trigger

Thomas Jefferson National Accelerator Facility

