Summary of EIC Electroweak Working Group Workshop Williamsburg, VA May 17-18, 2010

Kent Paschke

EIC Detector Workshop June 5, 2010

Slides and content from K.Kumar, I.Cloet, M. Glatzmaier, M. Gonderinger, S.Mantry, W.Marciano, M.J. Ramsey-Musolf

Topics from EW Working Group Workshop

These are interesting topics, and potentially very interesting but not yet any obvious high-priority bullet point.

Studies of the Electroweak Interaction

- Charged Lepton Flavor Violation τ -> e
- Weak Neutral Current couplings

Studies using the Electroweak Interaction

- high-x structure functions higher twist, charge symmetry violation, d/u of the proton
- PV EMC effect in nuclei, $F_3^{\gamma Z}$
- novel structure functions

Workshop featured reports of significant theoretical progress

Detailed studies of experimental feasibility have yet to be done!

MIVERSITY of VIRGINIA

Charged Lepton Flavor Violation

Theoretical motivation w.r.t. EIC initiated by M. Ramsey-Musolf

- The discovery of neutrino mass and mixing
- lepton number violation theoretically favored
- potentially enhanced charge lepton flavor violation within reach of proposed experiments
 - help decipher the mechanism of neutrinoless double beta decay
 - *R-parity violating Supersymmetry*
- Experimental LFV searches undergoing revival
- Ongoing at existing facilities (PSI, B-Factories), and also being looked at seriously for the future (J-PARC, Fermilab)
- The Mu2e project at Fermilab was given the highest near-term priority in the recent P5 report for US HEP
- Thus, it is interesting to see if EIC has a role to play in this subfield

UNIVERSITY JUNIVERSITY

Kent Paschke

Identifying Tau Leptons

Topology: neutral current DIS event; except that the electron replaced by tau lepton

 $e^- + p \rightarrow \tau^- + X$

- If mixed in with hadron remnants, the tau would be boosted
- If forward in the incident electron direction, the tau would be isolated
- Potential for clean identification with high efficiency:
 - look for single pion, three pions in a narrow cone, single muon: should be able to devise several good triggers
 - tau vertex displaced 200 to 3000 microns: would greatly help background rejection and maintain high efficiency if vertex detector is included in EIC detector design

Must also investigate the sensitivity and motivation for

Lepton Number Violation

$$e^- + p \rightarrow \mu^+ + X \qquad e^- + p \rightarrow \tau^+ + X$$

Monte Carlo study to design cuts, efficiency and background rejection
vertex tracker may be required

MIVERSITY of VIRGINIA

- some interest in starting this study at Stoney Brook (A. Deshpande)
- EIC Detector Workshop, June 2010

BRW Leptoquark limits

EIC @ 10 fb⁻¹ can decrease many existing limits by a factor of 2 to almost 2 orders of magnitude

High x Structure Functions

$A_{PV} \text{ in Electron-Nucleon DIS:}$ $polarized \ electron, \ unpolarized \ hadron$ $A_{PV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_A \frac{F_1^{\gamma Z}}{F_1^{\gamma}} + g_V \frac{f(y)}{2} \frac{F_3^{\gamma Z}}{F_1^{\gamma}} \right]$ $a(x) = \frac{3}{10} \left[(2C_{1u} - C_{1d}) \right] + \cdots$

For 2H, assuming charge symmetry, structure functions largely cancel in the ratio at high x:

$$b(x) = \frac{3}{10} \left[(2C_{2u} - C_{2d}) \frac{u_v(x) + d_v(x)}{u(x) + d(x)} \right] + \cdots$$

SOLID at JLab-12GeV

Program to map this out at high x (x~0.3-0.7) with high precision

- $C_{2q}\sp{is}$ and $sin^2\theta_w$
- CSV
- higher twist

Collider kinematics:

- At high Q²:
 - "huge" asymmetries
 - large y range
- At low Q²:
 - Very forward angle
 - small y; map out higher twist

MUNIVERSITY of VIRGINIA

Weak Neutral Current Couplings

 $C_{1u} = -\frac{1}{2} + \frac{4}{3}\sin^2(\theta_W) + \delta C_{1u} \approx -0.19$ $C_{1d} = \frac{1}{2} - \frac{2}{3}\sin^2(\theta_W) + \delta C_{1d} \approx 0.35$ $C_{2u} = -\frac{1}{2} + 2\sin^2(\theta_W) + \delta C_{2u} \approx -0.030$ $C_{2d} = \frac{1}{2} - 2\sin^2(\theta_W) + \delta C_{2d} \approx 0.025$

At end of JLab program (Qweak, MOLLER, SOLID): Interest in couplings and in the weak mixing angle will depend on LHC results

 $g_V^e = -1 + 4 \sin^2 \theta_W \sim -0.1$, the Y₁-term dominates the asymmetry, Higher Twist Controller in pertent for the interpretation of the defersion Lab PVD Considerable theoretical effort has been devoted to disentangling the

Sonny Mantry, M.J. Ramsey-Missolf, to FsySacto arXiver1004yB307 contributions to the a

- considered in papers by Bjorken and Wolfenstein [17, 18] more than this it was shown to arise from a single, non-local four-quark operator in the l
- only from quark-quark correlations
- A single 4-quark twist-4 matrix element contributes to the vector WNC term
- The relation $R^{\gamma Z} = R^{\gamma}$ holds true at twist-4 to perturbative corrections

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2}\pi\alpha} \left[a(x) + f(y)b(x) \right]$$

only quark-quark correlations given by a single matrix element

Collider kinematics: • small y, good (low) Q² range; search for higher twist

UNIVERSITY of VIRGINIA

- Twist-4 effects in vector WNC term comegligible sea-quark and CSV effects, and up to corrections in $\alpha_s(Q^2)$ mates of twist-four effects were first obtained in [19] where the contribu operators was estimated with the MIT Bag Model. This analysis was include corrections to the F_3 structure function (see Eq. (13) below). four effects to the asymmetry were estimated by the authors of Ref. [Quark-gluon correlation (Twist-2 + Twist-4) the possibility that $R^{\gamma} \neq R^{\gamma Z}$ at twist-four (see Eq. (14) below). These such a difference could introduce hadronic uncertainties that might im of CSV effects from A_{RL} . In this paper, we draw on the observations of correlation (Twist the twist
 - the Y_1 term in \overline{A}_{RL} for deuterium, given in Eq. (2), arises from a single involving up- and down-quark fields

To provide theoretical guidance for such a program, we utilize the MI Kent Paschke the size and variation of the twist-four contribution with B

Quark Kinematics

High-x resolution requires measurement of hadronic flow

Plan for high x structure functions

It is hard to beat fixed-target luminosity

- SOLID aims for many bins at measuring APV at 0.5%. At an EIC, this would seem to require 10³⁵ cm⁻² at very high s.
 - Not yet carefully checked... requires study for conclusion
 - Potentially may provide the best independent constraint on C_{2q} 's
- collider gives Q² range with small y : measure 4-quark twist-4 operator
 first-ever empirical bound on single HT quark-quark operator?
- additional topics in high-x p.d.f.'s: CSV (eD), d/u (ep), and sea quarks

Nuclear Structure Functions

Cloet, Bentz, Thomas, arXiv 0901.3559

- proposes that a neutron or proton excess in nuclei leads to an isovector-vector mean field dominated by ρ exchange
- shifts quark distributions: "apparent" CSV violation
- Isovector EMC effect: explain 1/2 of NuTeV anomaly
- Would be a smoking gun demonstration of medium modification

More generally, $F_2^{(\gamma Z)}$ and $F_3^{(\gamma Z)}$ for nuclear DIS interesting and new

- requires polarized e- with A
- inclusive rates for eA at low x, with y separation
- theoretical comment in nuclear $F_3^{\gamma Z}$

UNIVERSITY of VIRGINIA

Kent Paschke

Low-x Spin Structure Functions

$$\begin{aligned} \textbf{unpolarized electron, polarized hadron} \\ A_{TPV} &= \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \left[g_V \frac{g_5^{\gamma Z}}{F_1^{\gamma}} + g_A f(y) \frac{g_1^{\gamma Z}}{F_1^{\gamma}} \right] \end{aligned}$$

★Enough y range to separate vector and axial-vector pieces **★**¹H, ²H and ³He measurements **★**Precise measurements to $x \sim 0.01$ at low s and $x \sim 0.001$ at high s

 $\begin{array}{ll} \text{y-independent} & \text{y-dependent} \\ \textbf{1H} & \frac{2\Delta u^- + \Delta d^- + \Delta s^-}{4u^+ + d^+ + s^+} & \frac{\Delta u^+ + \Delta d^+ + \Delta s^+}{4u^+ + d^+ + s^+} \\ \textbf{2H} & \frac{3\Delta u^- + 3\Delta d^- + 2\Delta s^-}{u^+ + d^+ + s^+} & \frac{\Delta u^+ + \Delta d^+ + \Delta s^+}{u^+ + d^+ + s^+} \end{array}$

- EW amplitudes measure a different linear combination of quark polarizations, allowing a determination of Δs without SU(3)_f
- initial indications: very competive with semi-inclusive, phase 1 designs can make impact

UNIVERSITY of VIRGINIA

Kent Paschke

Low-x Spin Structure Functions

New frontier in precision QCD tests in inclusive DIS:

- In the long term, there are 15 different combinations that can be measured (EM, $\gamma Z,$ W)
- W production needs to be fully explored:
 - two structure functions g_1 and g_5
 - ${}^{1}H$ + ${}^{2}H$ with e⁻ equivalent to ${}^{1}H$ with e⁻ & e⁺ ?
- New sum rules, new dynamics in Q² evolution, other implications?

Start with focus on spindependent PDFs, Δ s extraction

$$\begin{split} F_{1}^{\gamma Z} &= \sum_{q} e_{q}(g_{V})_{q}(q + \bar{q}) \qquad F_{2}^{\gamma Z} = 2xF_{1}^{\gamma Z} \\ F_{3}^{\gamma Z} &= 2\sum_{q} e_{q}(g_{A})_{q}(q - \bar{q}) \\ g_{1}^{\gamma Z} &= \sum_{q} e_{q}(g_{V})_{q}(\Delta q + \Delta \bar{q}) \\ g_{2}^{\gamma Z} &= g_{4}^{\gamma Z} = 0 \\ g_{3}^{\gamma Z} &= 2x\sum_{q} e_{q}(g_{A})_{q}(\Delta q - \Delta \bar{q}) \qquad 2xg_{5}^{\gamma Z} = g_{3}^{\gamma Z} \end{split}$$

MIVERSITY of VIRGINIA

Kent Paschke

Topics from EW Working Group Workshop

Most promising topics use the electroweak interaction to study QCD

- high-x structure functions higher twist, charge symmetry violation, d/u of the proton
- PV EMC effect in nuclei, F₃^{γZ}
- Δ **s**, other novel structure functions

prospect for a phase 1 machine

Electroweak studies

- WNC couplings *hard to beat fixed target*
- Charged Lepton Flavor Violation τ -> e extensive MC study required

Sufficient theoretical guidance to launch these topics present bottleneck is getting the experimentalist time for rate studies and other calculations

UNIVERSITY of VIRGINIA

Kent Paschke

Electroweak Structure Functions

$$\begin{split} \frac{1}{2m_{N}}W_{\mu\nu}^{i} &= -\frac{g_{\mu\nu}}{m_{N}}F_{1}^{i} + \frac{p_{\mu}p_{\nu}}{m_{N}(p\cdot q)}F_{2}^{i} \quad i \equiv \gamma, \gamma Z, Z \\ & \cdot Ji, \text{Nucl. Phys. B 402} \\ (1993) & \cdot \text{Anselmino, Gambino} \\ & \text{Anselmino, Gambino} \\ & \text{and Kalinoski, hep-ph/} \\ & \text{Maselmino, Efremov \&} \\ & \text{Leader, Phys. Rep.} \\ & \text{261 (1995)} \end{split} \quad \begin{aligned} & + i\frac{\epsilon_{\mu\nu\alpha\beta}}{2(p\cdot q)} \left[\frac{p^{\alpha}q^{\beta}}{m_{N}}F_{3}^{i} + 2q^{\alpha}S^{\beta}g_{1}^{i} - 4xp^{\alpha}S^{\beta}g_{2}^{i} \right] \\ & - \frac{p_{\mu}S_{\nu} + S_{\mu}p_{\nu}}{2(p\cdot q)}g_{3}^{i} + \frac{S\cdot q}{(p\cdot q)^{2}}p_{\mu}p_{\nu}g_{4}^{i} + \frac{S\cdot q}{p\cdot q}g_{\mu\nu}g_{5}^{i} \end{split}$$

QPM Interpretation

UNIVERSITY of VIRGINIA

(1993)

$$\begin{split} F_1^{\gamma Z} &= \sum_q e_q(g_V)_q(q + \bar{q}) \qquad F_2^{\gamma Z} = 2x F_1^{\gamma Z} \\ F_3^{\gamma Z} &= 2 \sum_q e_q(g_A)_q(q - \bar{q}) \\ g_1^{\gamma Z} &= \sum_q e_q(g_V)_q(\Delta q + \Delta \bar{q}) \\ g_2^{\gamma Z} &= g_4^{\gamma Z} = 0 \\ g_3^{\gamma Z} &= 2x \sum_q e_q(g_A)_q(\Delta q - \Delta \bar{q}) \qquad 2x g_5^{\gamma Z} = g_3^{\gamma Z} \end{split}$$

Kent Pascilke

EIC Detector worksnop, June 2010