EIC-JLab Detector Workshop 04-05 June 2010 Jefferson Laboratory

Forward and Far-Forward Detection at ELIC

Charles E. Hyde Université Blaise Pascal, and Old Dominion University

Forward Particles of a 6x60 GeV collider

- "Forward" is defined relative to ion beam
 - Important issues also for low Q2 tagging on electron side, not addressed here.
- SIDIS and exclusive processes produce "jet" fragmentation particles (γ, π, K, etc).
 - These particles fill the full 4π laboratory detector space,
- Exclusive, DIS, Rapidity gap events produce ultra forward baryons, and forward mesons from dissociation.
 - Exclusive: $ep \rightarrow ep\gamma$
 - SIDIS or RapGap: $ep \rightarrow e'K...\Lambda...$
 - Deep Exclusive or SIDIS production of forward Δ , Λ will produce forward mesons and nucleons
 - mesons: momenta ~(m/M)P ~8 GeV/c θ ~ (0.2 GeV/c) / (8 GeV/c) ~25 mrad
 - nucleons: P~50 GeV/c, θ ~4 mrad
- Photoproduction can produce forward mesons [nearly] up to beam momentum

(Semi-) inclusive meson production kinematics

63

IR Optics (ions) at 60 GeV

Low $Q^2 (J/\Psi)$ vs high Q^2 (light mesons) – 4 on 30 GeV

Neutral vs Charged Particle Detection

- Forward Spectrometer
 - Maximum available space on ion line is ~2m
 - After Endcap RICH, Before Final Focus Quads
- Dipole option
 - Maximum analysis of charged particles
- Off Axis trajectory through Solenoid + dipole bend of charged particle trajectories complicates detection of neutrons at 0° through FFQ1-Q3
 - No drift space between dipole and FFQ1 to separate beam from 0° neutrons
 - Instead use Dipole to cancel perpendicular field component of solenoid.
 - Neutrons now parallel to beam through quads

Precession of Trajectories in Solenoid

Forward Detection

Precession of Trajectories in Solenoid

- 4 Tesla x 3m at 100 mrad
- G~10 T/m
 - Oversized quad 7 T max. field
- Primary N=Z beam, proton and neutron spectators in Q1 acceptance
- Need B_xdl=-1.2 Tm from Dipole to align charged and neutral trajectories through Q1-Q3
- Neutron cone larger at lower beam momenta?

Forward Detection

Forward Tracking

- 1.2 Tm vertical bend Dipole
 - Cancels ⊥ B-field of Solenoid
 - Tracking + EMCal + NeutronCal between dipole and Q1
 - Trajectories in shadow of Q1 are tracked
 > 12 GeV/c for < 10mr
 - Wide angle neutrons detected by annular HCal.
 - 0° neutrons and Charged particles aligned through Q1-Q3
 - Need 20 cm aperture of Quads Q4, Q5, Dipole at 15-20 m

Momentum Resolution of Forward Tracker

- Measure points to 100μ over 0.5 m length before and after dipole
 - δθ ~0.3 mrad.
- Dipole Bdl = -1.2 Tm
 - Bending angle
 - θ = (ecBdl)/(pc) = (0.3GeV)/(pc)
- Momentum Resolution
 - $\delta p/p = \delta \theta/\theta = pc/(1000 \text{ GeV})$
 - 1% at 10 GeV/c
 - 0.5% at 5 GeV/c

Ion Ring – Beam envelopes

Mon Apr 05 16:00:00 2010 OptiM - MAIN: - C:\Working\ELIC\MEIC\Optics\lon Ring\Arc_Straight_IR_Str_90_in_1.opt

Beam-stay-clear area near IP, before Q1: 10-12 $\sigma \rightarrow 2.5$ cm @ 7 m = 0.2 deg Beam-stay-clear area away from IP: 8-10 $\sigma \rightarrow 2$ mm @ 20 m = 0.1 mr

Far Forward Tracking

- 20-40 Tm Dipole at 20m
 - Need 1-2 m drift space :
 - Dispersion ~ 1 m /100%
 - Not [anti-symmetric] Lattice dispersion: Dispersion of a 0° particle at IP
 - β ~ D
- Lattice Admittance $\Delta P/P \sim 0.003 = 10 \delta P/P$
- "Recoil" ion with (P'-P)/P > 0.005
 - x> 5 mm
 - BSC ~ 10 $[\epsilon\beta/\gamma]^{1/2}$ ~1 mm
 - $\delta x = 100 \ \mu \rightarrow dp_{||}/p = 10^{-4} \rightarrow better than intrinsic beam spread$
- Neutron Detection in ZDC
 - Neutron P_{\perp} <60 MeV/c cone is 20 mm radius
 - Separated from Beam by 200 mm after 2m drift
 - 10 mm resolution at 25 m $\rightarrow \delta \theta = 0.4$ mr $\rightarrow \delta p_{\perp} = 12$ MeV/c

Conclusions

- Almost continuous (if not perfectly hermetic) detection is possible for forward and far-forward charged and neutral particles.
 - Modest dipole allows full tracking and PID, even in Quad shadow
 - Dipole Bdl = Solenoid [Bdl tanθ]
 - Resolution will be degraded if Solenoid B-field or crossing angle is reduced
- Study 30m propagation through Beam Line optics for far forward exclusive protons, spectator protons, neutrons...
 - Coherent Nuclei?
 - Heavy fragments?
 - Neutron evaporation
- Start building a Monte Carlo!

RHIC - Zero Degree Calorimeter arXiv:nucl-ex/0008005v1

Context: The RHIC ZDC's are hadron calorimeters aimed to measure evaporation neutrons which diverge by less than 2 mr from the beam axis.

ZDC Dimensions

Table 1			
Mechanical parameters of the ZDC's			
		Absorber	
Production ZDC		Tungsten alloy	
		$(100 \text{x} 187 \text{x} 5 \text{ mm}^3)$	
-	Space for fibers	Modules/Layers	
_	1.4 mm	$3(5.1\lambda_I;149X_0)$	
_		27	

27 layers of 5 mm \rightarrow 13.5 cm 3 modules \rightarrow 40 cm thickness 60% Shower containment 1 cm from edge 9% + 8%[GeV/E_n]^{1/2}

Fig. 5. Mechanical design of the production Tungsten Modules.Dimensions shown are in mm.

Forward Detection

Detector/IR in simple formulas

 $t \sim E_p^2 \Theta^2 \rightarrow Angle recoil baryons = t^{\frac{1}{2}}/E_p$

Deep exclusive kinematics:

Forward1D etection