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Outline
• Hadron Structure from Lattice QCD

– Anatomy of a calculation
– Pion Form Factor

• Nucleon Structure
•Three-dimensional Imaging

-Generalized Parton Distributions
- Transverse-momentum-dependent distributions and 
transversity

• Flavor-singlet Structure
• “EMC effect”
• Excited States and Transition Form Factors
• Outlook
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Hadron Structure
How are
– charge and currents
– momentum
– spin and angular momentum

apportioned amongst the quarks and gluons that make up a hadron?

Encapsulated in
- electromagnetic form factors
- unpolarized structure functions and Transverse-momentum-dependent 

distributions (TMDs)
- polarized structure functions, Generalized Parton Distributions (GPDs), 

TMDs

Lattice QCD can either compute all of these or constrain them!
Technique: calculation of hadronic matrix elements.
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�π(�pf ) | Vµ(0) | π(�pi)� = (pi + pf )µF (Q2)

Vµ =
2

3
ūγµu− 1

3
d̄γµd

−Q2 = [Eπ(�pf )− Eπ(�pi)]
2 − (�pf − �pi)

2

Paradigm: Pion EM form factor

e
e

where

12 GeV
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φ(x) = d̄(x)γ5u(x)

φ†(x) = −ū(x)γ5d(x)

Vµ(x) = euū(x)γµu(x) + edd̄(x)γµd(x).

Anatomy of a Matrix Element Calculation - I

Pion Interpolating 
Operator

p’=p+q p
π

γq

π

�0 | φ(0) | π, �p+ �q��π, �p+ �q | Vµ(0) | π, �p��π, �p | φ† | 0�e−E(�p(t−ti)e−E(�p+�q)(tf−t)

Resolution of unity – insert states
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F (Q2) =
1

1 +Q2/MVMD
2

| Qmax |� 1

a

Pion Form Factor - I
LHPC, Bonnet et al,
Phys.Rev. D72 (2005) 054506

�r2� = 6
dF (q2)

dq2

����
q2=0

Charge radius
Quark distribution amplitudes
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Pion Form Factor - II

Brandt, Jutter, Wittig, 
arXiv:1109.0196

Twisted 
boundary 
conditions
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�pf | Vµ | pi� = ū(pf )

�
γµF1(q

2) + iqν
σµν

2mN
F2(q

2)

�
u(pi)

GE(Q
2) = F1(Q

2)− Q2

(2mN )2
F2(Q

2)

GM (Q2) = F1(Q
2) + F2(Q

2)

Nucleon EM Form Factors
Two form factors

Dirac Pauli

Related to familiar Sach’s electromagnetic form factors through

N N1

γ
pipf

q

Isovector: difference 
between p and n or 
difference between u and d 
currents.
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Isovector Form Factor

J.D.Bratt et al (LHPC),
arXiv:0810.1933

DWF valence/Asqtad sea
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v ≡ mphys
N

mN (mπ)F
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2 (0), as a function of the pion mass

for all ensembles.

regard to their error bars.

We can also scrutinize this behavior by looking at the form factors as a function of Q2
directly and compare the

location of the points on the two volumes. Figure 8 shows this comparison. The solid curves are dipole fits to all
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FIG. 8: Direct comparison of finite-volume effects for the isovector form factors, F v
1 (Q2) and F v

2 (Q2), at mπ = 356MeV on the
two volumes Ω = 283 × 64 and Ω = 203 × 64.

available data points. It is evident that their dipole masses are different, but the data points at small Q2
are identical.

The difference in curvature is only caused by points beyond that.

We conclude that we observe finite-size effects in our lattice form-factor data. However, the finite-size effects are

only significant for intermediate values of Q2
. Based on the smallest values of Q2

, the Dirac and Pauli radii may be

identical on both volumes. We did not find a satisfactory explanation based on chiral expansions or models at this

point and leave this matter for future investigations.

As a final remark, in Sec. IVD we will compare the radii defined by the generalized form factors. There we will

also find suggestive evidence that the mass radius is larger on the larger volume. Here our intention was to illustrate

our observation of finite-volume effects with the data that is most accurate.

IV. RESULTS

A. The axial charge

In this section we present new data on the nucleon axial charge gA. Although axial form factors are discussed in more

depth below in Sec. IV C, the fundamental phenomenological importance of the axial charge warrants highlighting our

Data well described by dipole form - but 
example of notable finite-volume effect: 
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Nucleon Form Factors - III

LHPC, arXiv:1001.3620

Dipole fits at each pion mass
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FIG. 14: Dirac rms radius 〈r2
1〉1/2 determined from a dipole fit. Dashed line represents a linear

extrapolation of our results. Square, up triangle, diamond, left triangle and down triangle denote

two-flavor [2] and quenched DWF [1], two-flavor and quenched Wilson [23], and mixed action [29]

calculations, respectively. A prediction from HBChPT with the experimental result [12, 23] is also

plotted.

magnetic form factors
GM(q2)

GE(q2)
=

ΛV
T (q)

ΛV
4 (q)

. (25)

At zero momentum transfer, we obtain 1 + F2(0) from the ratio. Figure 16 shows that the

result for GE(q2)/GM(q2)− 1 at q2 = 0, obtained via a linear fit in q2, is consistent with the

determination from a dipole fit of F2(q2).

In Fig. 17 we present the anomalous magnetic moment of the nucleon, determined by the

dipole fit presented in table IV, together with some other lattice QCD calculations and the

experimental value. Our present results slightly decrease with the pion mass, in agreement

with previous lattice calculations [1, 23]. They extrapolate well linearly in the pion mass

squared, and result in a value 26% smaller than the experiment. This result at the physical

pion mass is consistent with those of previous calculations [1, 19] using a linear fit.

We present in Fig. 19 the result of the Pauli rms radius. These results are obtained from

a dipole fit and summarized in table IV. Some other lattice QCD calculations [1, 23] are

also plotted in the figure for comparison. We find the lightest point to be slightly smaller

25

RBC/UKQCD, arXiv:0904.2039
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Different Regimes in Different Experiments

Form Factors
transverse quark

 distribution in 
Coordinate space

Structure Functions
longitudinal

quark distribution
in momentum space
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Moments of Structure Functions

• Describe distribution of longitudinal momentum and spin in 
proton

• Matrix elements of  light-cone correlation functions

• Expand O(x) around light-cone

• Diagonal matrix element

Dominated by lightest 
state
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Iso-vector Momentum Fraction
Isovector momentum fraction

CTEQ6

LHPC,arXiv:1001.3620 
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Status and prospects for the calculation of hadron structure from lattice QCD Dru B. Renner

Figure 4: World’s dynamical lattice QCD results for 〈x〉u−d . The lattice calculations all overestimate
the phenomenologically determined value. They also show a fair amount of scatter amongst themselves.
The possible role of finite size and renormalization effects are discussed in the text. The lattice results
are from [16, 17, 18] (RBC NF = 2+ 1), [19, 20] (RBC NF = 2), [21] (LHPC), [22, 23] (ETMC) and
[24] (QCDSF). The experimental result is generated using the LHAPDF library [6] and the CTEQ6.6C
dataset [9].

addressed. Without resolving these discrepancies, it will be hard to confidently establish physical
results even with calculations approaching the physical pion mass.

Before discussing finite size and renormalization effects, I want to make a quick comment on
the lattice spacing dependence of 〈x〉u−d . This is currently poorly studied. Of the five calculations
shown in Fig. 4, only QCDSF has calculated beyond a single lattice spacing. However, even in that
case, the range in a that is used to establish scaling is not large. Their results are an encouraging
hint that lattice artifacts are not a substantial part of the discrepancy in Fig. 4, but there is nothing
universal about such effects and all the groups must make a stronger effort to calculate at multiple
lattice spacings.

A persistent concern in nucleon structure calculations is the role of finite size effects. In
fact, the results at Lattice 2009 have added much to this issue even if they haven’t resolved it.
In Fig. 5, I examine several finite size studies by various collaborations. Excluding the lightest
calculations at m! = 260 MeV, one observes no statistically significant finite size effects for any
of the remaining calculations. These results are consistent with the common rule-of-thumb that
m!L≈ 4 is sufficient. 6 However, the recent results of QCDSF at m! = 260 MeV potentially stand
in contrast to the finite size dependence observed at higher pion masses. This calculation suggests
that m!L = 4 is at best just barely sufficient to capture the large volume limit of 〈x〉u−d . It is

6My use of m!L to gauge finite size effects is, of course, not strictly correct. I am loosely assuming a discussion in
or near the chiral limit in which 1/m! will be the dominant length scale.

9

Dru Renner, arXiv:1002.0925

Excited-state contributions?
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Nucleon Axial-Vector Charge 
mf 0.005 0.01 0.02 0.03

(2.7 fm)3 1.073(39) 1.186(36) 1.173(36) 1.197(30)

(1.8 fm)3 N/A 1.066(72) 1.115(58) 1.149(32)

TABLE II: Summary of axial charge, gA, for both volumes.
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FIG. 7: Axial charge gA together with two-flavor [2] and quenched [1, 20] DWF, and mixed

action [26, 29] calculations. Recent Nf = 2 + 1 DWF by LHP [29] is also plotted.

parameters in the literatures. Results obtained from the fit using the unsymmetrized data,

presented in the figure with one standard deviation, are employed in the analysis. These

results are compiled in table II.

Figure 7 shows that the (2.7 fm)3 data are almost independent of the pion mass (squared)

except for the lightest point which is about 9% smaller than the others. A set of the results

obtained with a smaller volume, (1.8 fm)3 shows a similar downward behavior, albeit with

relatively larger statistical uncertainties. An earlier two flavor calculation by RBC [2] with

spatial volume (1.9 fm)3 and 1/a = 1.7 GeV showed a clear downward behavior, but it sets

in at heavier pion mass.

We suspect that this pion mass dependence driving gA away from the experimental value

is caused by the finite volume of our calculation. Similar behavior was observed in quenched

DWF studies [1, 20] and was predicted in a model calculation [50]. However, for pion masses

15

RBC/UKQCD, 2+ 1 flavor DWF
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Moments of Parton Distributions

Distributions at 5 GeV
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Can we recover distribution?
• Calculations give moments of distributions
• High moments of distributions (>4) - hypercubic symmetry, 

mix with lower moments.
• Can we recover shape from knowledge of, say, first three  

moments?

Detmold, Melnitchouk, 
Thomas

Need to assume 
parametrization
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Different Regimes in Different Experiments

Form Factors
transverse quark

 distribution in 
Coordinate space

Structure Functions
longitudinal

quark distribution
in momentum space

GPDs
Fully-correlated

quark distribution in 
both coordinate and 
momentum space
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Generalized Parton Distributions (GPDs)

D. Muller et al (1994), X. Ji & A. 
Radyushkin (1996)

• Matrix elements of  light-cone correlation functions

• Expand O(x) around light-cone

• Off-forward matrix element

LHPC, QCDSF, 2003

Co-efficient of ξi
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GPDs and Orbital Angular Momentum
• Form factors of energy momentum tensor - quark and gluon 

angular momentum

1

2
=

�

q

Jq + Jg

=
1

2

�
�

q

(Aq
20(t = 0) +Bq

20(t = 0)) +Ag
20(t = 0) +Bg

20(t = 0)

�

“q̄γµDνq”

X.D. Ji, PRL 78, 610 (1997)

�

q

�
1

2
∆Σq + Lq

�

Decomposition
• Gauge-invariant
• Renormalization-scale dependent
• Handle on Quark orbital angular momentum

Mathur et al., Phys.Rev. D62 (2000) 114504
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Origin of Nucleon Spin

HERMES, PRD75 (2007)

• Total orbital angular momentum 
carried by quarks small
• Orbital angular momentum carried 
by individual quark flavours 
substantial. LHPC, Haegler et al., 

Phys. Rev. D 77, 094502 
(2008); arXiv.1001.3620
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Origin of Nucleon Spin - II

Ph. Hägler, MENU 2010, W&M 19

!"#$!% &'()*+&'$,-."/'

LHPC +/0-12344356784 (this work)

LHPC PRD `08 0705.4295

QCDSF (Ohtani et al.) 0710.1534

Goloskokov&Kroll EPJC`09 0809.4126

Wakamatsu 0908.0972

DiFeJaKr EPJC `05 hep-ph/0408173

(Myhrer&)Thomas PRL`08 0803.2775

9!:+;$<+**$=$>?:@4AB$<C?DCE$!<C>@4FG
Ph. Hagler, Menu 2010

p-DVCS (HERMES)

n-DVCS (Hall A)
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Parametrizations of GPDs

Comparison with Diehl et al, 
hep-ph/0408173

Provide phenomenological guidance for 
GPD’s
–  CTEQ, Nucleon Form Factors, 

Regge 

Important Role for LQCD

22
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   Transverse momentum distributions (TMDs) 

final state interactions!
explain large asymmetries otherwise forbidden!

signature of QCD!

from experiment, e.g., SIDIS (semi-inclusive deep inelastic scattering)

HERMES,  COMPASS,  JLab 6 GeV,  JLab 12 GeV ,  ...  ,  EIC

Cf: measured in 
Drell-Yan, eg at 
RHIC-spin

23
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ΦΓ =

�
d(n · k)

�
d4l

2(2π)4
e−ik·lΦ̃Γ(l;P, S)

=

�
d(n · k)

�
d4l

2(2π)4
e−ik·l�P, S | q̄(l)ΓUq(0) | P, S�

TMDs in Lattice QCD

TUM/T39-09-08, MIT-CTP 4056

Intrinsic quark transverse momentum in the nucleon from lattice QCD

Ph. Hägler,1 B.U. Musch,1 J.W. Negele,2 and A. Schäfer3
1Institut für Theoretische Physik T39, Physik-Department der TU München, 85747 Garching, Germany∗

2Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany

(Dated: December 22, 2009)

A better understanding of transverse momentum (k⊥-) dependent quark distributions in a hadron
is needed to interpret several experimentally observed large angular asymmetries and to clarify the
fundamental role of gauge links in non-abelian gauge theories. Based on manifestly non-local gauge
invariant quark operators we introduce process-independent k⊥-distributions and study their prop-
erties in lattice QCD. We find that the longitudinal and transverse momentum dependence approx-
imately factorizes, in contrast to the behavior of generalized parton distributions. The resulting
quark k⊥-probability densities for the nucleon show characteristic dipole deformations due to cor-
relations between intrinsic k⊥ and the quark or nucleon spin. Our lattice calculations are based on
Nf=2+1 mixed action propagators of the LHP collaboration.

Introduction.— Already 30 years ago, it has been
noted that intrinsic transverse momentum, k⊥, of par-
tons gives rise to azimuthal asymmetries in unpolarized
semi-inclusive deep inelastic scattering (SIDIS), for ex-
ample e−+p→e−+π+X, nowadays known as the Cahn
effect [1]. Since then, significant progress has been made
in understanding intrinsic k⊥ effects and their relation
to the eikonal phases that quark fields acquire in hadron
scattering processes due to initial and final state inter-
actions [2]. The eikonal phases, given by gauge links
(Wilson lines), turn out to be process-dependent and lead
to, e.g., the Sivers and Collins asymmetries [3, 4] in po-
larized SIDIS, which have attracted a lot of attention
and were already observed in experiments at HERMES,
COMPASS and Jefferson Lab [5]. Theoretically, these

!k

u

d

zP

z

zxP

u

yk

xk

FIG. 1: Illustration
of the transverse mo-
mentum distribution of
quarks in the proton.

can be described in the
framework of QCD factoriza-
tion using transverse momen-
tum dependent parton distri-
bution functions (tmdPDFs)
[4, 6], an approach that goes
beyond the usual collinear
approximation and operator
product expansion involving
(moments of) PDFs. In addi-
tion to their phenomenolog-
ical importance, tmdPDFs
provide essential information
about the internal structure
of hadrons in the form of
probability densities in the transverse momentum plane,
ρ(x,k⊥), as illustrated in Fig. 1 [7], where x is the lon-
gitudinal momentum fraction carried by the quark.

In this work, we introduce process-independent k⊥-
distributions and calculate these in lattice QCD. We il-
lustrate our results by presenting k⊥-densities of quarks
in the nucleon, with a focus on possible correlations be-
tween k⊥ and the transverse quark and nucleon spins,
resulting in deformations from a spherically symmetric

distribution. It is interesting to compare this approach
with generalized parton distributions (GPDs) in impact
parameter (b⊥-) space [8], which allows one to study the
spatial distribution of partons in hadrons in form of prob-
ability densities ρ(x, b⊥) [9]. Lattice QCD studies of the
latter revealed characteristic non-spherical shapes of the
pion and the nucleon in the case of transversely polar-
ized quarks [10, 11]. We stress, however, that tmdPDFs
and GPDs provide fundamentally different and comple-
mentary insight into hadron structure, since they are not
related by Fourier transformation and k⊥ and b⊥ are not
conjugate variables.

To introduce the different tmdPDFs, we first define the
momentum-space correlators ΦΓ=ΦΓ(x,k⊥;P, S),

ΦΓ =
�

d(n̄·k)
�

d4l

2(2π)4
e−ik·l�ΦΓ(l;P, S)

=
�

d(n̄·k)
�

d4l

2(2π)4
e−ik·l�P, S|q̄(l)ΓUq(0)|P, S� .(1)

with nucleon states |P, S� depending on momentum and
spin, and where the Wilson line U=UC(l,0), defined by a
path ordered exponential, ensures gauge invariance of the
non-local quark operator q̄(l) . . . q(0). For the vector (un-
polarized), Γµ

V =γµ, axial-vector (polarized), Γµ
A=γµγ5,

and tensor (quark helicity flip), Γµν
T =iσµνγ5, cases, the

correlators in Eq. 1 can be parametrized by the twist-2
tmdPDFs [12]:

nµΦµ
V = f1 + Si�⊥ijkj

1
mN

f⊥1T

nµΦµ
A = Λg1 +

k⊥ · S⊥
mN

g1T

nµΦµj
T = −Sjh1 −

�⊥jiki

mN
h⊥1

− Λkj

mN
h⊥1L −

(2kjki − k2
⊥δji)Si

2m2
N

h⊥1T , (2)

where the distributions f, g, h depend on x and k⊥ and
Λ is the nucleon helicity. The light-cone vectors n and

ar
X

iv
:0

90
8.

12
83

v1
  [

he
p-

la
t] 

 1
0 

A
ug

 2
00

9

B. Musch, PhD Thesis; Haegler, 
Musch, Negele, Schafer arXiv:

0908.1283

Introduce Momentum-space correlators

Choice of path - retain gauge invariance

gauge link operator U

�P | q(�) ΓU q(0) |P � is gauge invariant.

continuum

U ≡ P exp

�
−ig

� �

0
dξµAµ(ξ)

�

along path from 0 to �

lattice

product of link variables

factorization in SIDIS :
path runs to infinity and back

here (up to now):
straight path

gauge link operator U

�P | q(�) ΓU q(0) |P � is gauge invariant.

continuum

U ≡ P exp

�
−ig

� �

0
dξµAµ(ξ)

�

along path from 0 to �

lattice

product of link variables

factorization in SIDIS :
path runs to infinity and back

here (up to now):
straight path

SIDIS: path runs to infinity Lattice: equal time slice

gauge link operator U

�P | q(�) ΓU q(0) |P � is gauge invariant.

continuum

U ≡ P exp

�
−ig

� �

0
dξµAµ(ξ)

�

along path from 0 to �

lattice

product of link variables

factorization in SIDIS :
path runs to infinity and back

here (up to now):
straight path 24



Worm gears on the lattice
Slide: A. Bacchetta

P. Hägler, B. U. Musch, J. W. Negele, and A. Schäfer, Europhys. Lett. 88 
(2009) 61001
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   Transverse momentum distributions (TMDs) 

Lattice QCD,  including effect of final state interactions

�

�

�

�

�

�

new calculations with 
extended operator

preliminary results
mπ=800 MeV, 
MILC lattices,

LHPC propagatorsBoer-Mulders function : 
odd signal (SIDIS vs. Drell-Yan)
still far from light cone
⇒ Proposal to study pion TMDs

26

B.Musch et al.,arXiv:1111.4249

T-odd TMDs accessible...

Transversely-polarized quarks, unpolarized nucleon

26



Flavor-Singlet Hadron Structure

27



Flavor-singlet: Disconnected Contributions

Amalgam of 
Lattice QCD and 
Phenomenology 
by Leinweber et 
al.

Strangeness 
contribution to electric 
and magnetic form 
factors.
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Gs
M (0) = −0.017(25)(07)

Ab initio calculation
The calculation of nucleon strangeness form factors from Nf = 2+1 clover fermion lattice QCD T. Doi
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Figure 2: The chiral extrapolated results for Gs
M(Q2) (left) and Gs

E(Q2) (right) plotted with solid lines.
Shaded regions represent the error-band with statistical and systematic error added in quadrature. Shown
together are the lattice data (and Q2-extrapolated Gs

M(0)) for !ud = 0.13760 (circles), 0.13800 (triangles),
0.13825 (squares) with offset for visibility.

weak quark mass dependence. In either of alternative analyses, we find that the results are consis-
tent with previous ones. While a further clarification with physically light quark mass simulation
and a check on convergence of HB"PT [21] is desirable, we use the dependence of results on differ-
ent extrapolations as systematic uncertainties. Third, we examine the contamination from excited
states. Because our spectroscopy study indicates that the mass of Roper resonance is massive com-
pared to the S11 state on the current lattice [22], the dominant contaminations are (transition) form
factors associated with S11. On this point, we find that such contaminations can be eliminated the-
oretically, making the appropriate substitutions for #±e in Eq. (2.2) and {#±e , #±k } in Eq. (2.3) [11].
It is found that the results from this formulation are basically the same as before, so we conclude
that the contamination regarding the S11 state is negligible.

As remaining sources of systematic error, one might worry that the finite volume artifact could
be substantial considering that the spacial size of the lattice is about (2fm)3. However, we recall
that Sachs radii are found to be quite small, |〈r2s 〉E,M| # 0.1fm2, which indicates a small finite
volume artifact. For the discretization error, we conclude that finite (qa) discretization error is
negligible, since the lattice nucleon energy is found to be consistent with the dispersion relation.
As another discretization error, we note that mN (mK) is found to have 6 (8) % error for the current
configurations [14, 23]. Considering the dependence of Gs

E,M on these masses, we estimate that the
discretization errors amount to <∼ 10%, and are much smaller than the statistical errors. Of course,
more quantitative investigations are desirable, and such work is in progress.

To summarize the results of form factors, we obtain Gs
M(0) = −0.017(25)(07), where the

first error is statistical and the second is systematic from uncertainties of the Q2 extrapolation and
chiral extrapolation. We also obtain $a = 0.58(16)(19) for dipole mass or $̃a = 0.34(17)(11)
for monopole mass, and gsE = 0.027(16)(08). These lead to Gs

M(Q2) = −0.015(23), Gs
E(Q2) =

0.0022(19) at Q2 = 0.1GeV2, where error is obtained by quadrature from statistical and systematic
errors. We also obtained, e.g., Gs

M(Q2) = −0.014(21), Gs
E(Q2) = 0.0041(38) at Q2 = 0.22GeV2.

Note that these are consistent with the world averaged data at Q2 = 0.1GeV2 [1, 2, 3] and the
recent measurement at Mainz [24], Gs

M(Q2) = −0.14(11)(11), Gs
E(Q2) = 0.050(38)(19) at Q2 =

0.22GeV2, with an order of magnitude smaller error. In Fig. 2, we plot our results for Gs
M(Q2),

Gs
E(Q2), where the shaded regions correspond to the square-summed error.

5

Doi et al. (ChQCD Collaboration), 
arXiv:0910.2687, PRD79:094502,2009

Uncertainties: statistical, Q2 dependence, chiral extrapolation
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Strange-quark contribution to hadron spin

In general, Quark and gluons mix under renormalization

The local operators mix as follows:

QCDSF, arXiv:1112.3354

Small, negative contribution
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31

Gluon Momentum Fraction in Pion
• Flavour-singlet: mixing of quark and gluon contributions
• Notoriously difficult, but essential
• Improved operator E2 – B2: 40x increase in signal
• Normalize operator by ratio of entropy at finite T

H. Meyer, J. Negele, PRD (2008) 

Momentum sum rule:

31



Medium modification of structure
• How is the structure of a hadron modified “in medium” 

- EMC effect?
• First attempt - momentum fraction carried by quarks in 

Bose-condensed pion gas.

W Detmold, H-W Lin, 
arXiv:1112.5682

Proof of concept
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G
M

1

Q2 2

mπ = 297

mπ = 353
mπ = 330

Transition Form Factors

Form factors of excited states, and transition form factors to excited states, provide 
additional insight into nature of QCD.  Precise electro-production data

Program of computations looking at Δ form factor, and Nγ → Δ transition form factors
N.B.   Δ → Nπ is p-wave decay, suppressed at zero momentum.
Admits three multipoles: magnetic dipole, electric quadrupole and Coulomb 
quadrupole: GM1, GE2, GC2

Alexandrou et al, DWF + DWF valence/Asqtad sea

Free of disconnected contributions

N

γ

Δ
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REM = −GE2(Q2)

GM1(Q2)
RSM = − | �q |

2m∆

GC2(Q2)

GM1(Q2)

R
E

M
(%

)

Q2 2

mπ = 353
mπ = 297

R
S
M

(%
)

Q2 2

mπ = 353
mπ = 297

N-Δ Transition Form Factor

Non-zero values: sphericity in either N or Δ - zero quadrupole moment for 
spin-1/2 system

Delta is unstable - Luscher, Lellouch

34



Form factors at High Q2

• For exclusive processes at sufficiently high Q2, can describe 
processes in terms of quark distribution amplitudes, e.g. for N(*)

• Can compute low moments of quark distribution amplitudes

QCDSF, arXiv:1112.0473

N N*(1535)
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Form factors at High Q2

V.Braun, arXiv:1008.5228

Helicity amplitudes from DA
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Summary
• GPDs and TMDs are Drawing a three-dimensional picture of 

the Proton
• Control over systematic uncertainties

– Finite-pion mass
– Finite volume
– Excited states

• Role of sea quarks and of gluons now being addressed
• New questions

– Can we go beyond moments?
– How is hadron structure “modified” in medium?
– Formalism for properties of unstable hadrons?
– Form factors at high Q2
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Lattice QCD Roadmap
Workshop on Extreme Computing, Jan. 2009
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• Lattice QCD can compute 
moments of GPDs and PDFs, 
and the t-dependence

Compare to phenomenological 
models

bT (fm)
x

Decrease slope : decreasing 
transverse size as x ! 1 
Burkardt

Transverse Distribution - I
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Statistics for Hadron Structure

Nucleon Generalized Form Factors M.F. Lin and J.W. Negele

(a) (b)

Figure 1: The left panel shows the signal-to-noise ratio of the nucleon two-point correlation function on
Asqtad lattices at m! ∼350 MeV, where beyond t = 12, the exponential decay is given by (MN− 3

2m!). The
right panel shows the corresponding “effective mass” of the signal-to-noise ratio in (a), where the horizontal
line is the measuredMN− 3

2m! of the ensemble.

(a) (b)

Figure 2: The left panel shows the extrapolation of the signal-to-noise ratio to the physical pion mass. The
right panel shows the exponential increase of the number of configurations needed to maintain 3% accuracy
at separation t= 10 as one approaches the chiral limit.

which decreases exponentially with (MN− 3
2m!)t. Figure 1(a) shows a typical result for the signal

to noise ratio as a function of the time separation, which displays the expected exponential decay
in MN − 3

2m! at large t. This is clear from Figure 1(b), where we show the “effective mass” of
the signal to noise, compared with the measured MN − 3

2m! of the ensemble, which is denoted
by the horizontal line. Using comparable calculations for the three lowest pion masses, ∼ 300,
350 and 500 MeV, we can extrapolate the signal-to-noise ratio to the physical point, as shown
in Figure 2(a). Correspondingly, the number of configurations required to attain 3% accuracy is
shown in Figure 2(b).

3. Coherent Sink Techniques to Increase Statistics

Given the need for 5,000 to 10,000 independent measurements to overcome the exponentially

3

Increasing statistics in approach to physical quark 
mass: more severe for baryons than mesons
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Flattening of GFFs with increasing n

Lattice results consistent with 
narrowing of transverse size with 
increasing x

Transverse radii

Transverse Distribution - II
LHPC, Haegler et al., 
Phys. Rev. D 77, 094502 
(2008)
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Parametrizations of GPDs

Comparison with Diehl et al, 
hep-ph/0408173

Provide phenomenological guidance for 
GPD’s
–  CTEQ, Nucleon Form Factors, 

Regge 

Important Role for LQCD
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Nucleon Form Factors - II
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for all ensembles.

regard to their error bars.

We can also scrutinize this behavior by looking at the form factors as a function of Q2
directly and compare the

location of the points on the two volumes. Figure 8 shows this comparison. The solid curves are dipole fits to all
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FIG. 8: Direct comparison of finite-volume effects for the isovector form factors, F v
1 (Q2) and F v

2 (Q2), at mπ = 356MeV on the
two volumes Ω = 283 × 64 and Ω = 203 × 64.

available data points. It is evident that their dipole masses are different, but the data points at small Q2
are identical.

The difference in curvature is only caused by points beyond that.

We conclude that we observe finite-size effects in our lattice form-factor data. However, the finite-size effects are

only significant for intermediate values of Q2
. Based on the smallest values of Q2

, the Dirac and Pauli radii may be

identical on both volumes. We did not find a satisfactory explanation based on chiral expansions or models at this

point and leave this matter for future investigations.

As a final remark, in Sec. IVD we will compare the radii defined by the generalized form factors. There we will

also find suggestive evidence that the mass radius is larger on the larger volume. Here our intention was to illustrate

our observation of finite-volume effects with the data that is most accurate.

IV. RESULTS

A. The axial charge

In this section we present new data on the nucleon axial charge gA. Although axial form factors are discussed in more

depth below in Sec. IV C, the fundamental phenomenological importance of the axial charge warrants highlighting our

LHPC, arXiv:1001:3620 

Data well described by dipole form - but example of notable finite-
volume effect

T. Hemmert, HS2
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Nucleon structure from mixed action calculations using 2+1 flavors of asqtad sea and
domain wall valence fermions
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We present high statistics results for the structure of the nucleon from a mixed-action calculation

using 2+1 flavors of asqtad sea and domain wall valence fermions. We perform extrapolations

of our data based on different chiral effective field theory schemes and compare our results with

available information from phenomenology. We discuss vector and axial form factors of the nucleon,

moments of generalized parton distributions, including moments of forward parton distributions,

and implications for the decomposition of the nucleon spin.

PACS numbers: 12.38.Gc,13.60.Fz
Keywords: Lattice QCD, hadron structure

I. INTRODUCTION

Determining the structure of the nucleon in terms of quarks and gluons is central to our goal of understanding
baryonic matter at the level of its smallest constituents. While the theory describing the strong interactions of quarks
and gluons, Quantum Chromodynamics, was identified thirty-five years ago, its predictions at low energies have been
notoriously hard to derive ab initio. The modern approach to calculate the properties of hadrons is based on the
Euclidean path integral representation of QCD discretized on a space-time lattice, i.e. lattice QCD. Importance
sampling methods, implemented on massively parallel computers, make it possible to extract, in particular, many
properties of the nucleon.

In recent years, advances both in algorithms and in computer technology made a series of remarkable calculations
possible that had a large impact on our understanding of nucleon structure. Among the quantities calculated we
would like to mention the quark contribution to the nucleon spin [1, 2], the nucleon transverse structure [3], and
the nucleon axial charge [4, 5]. Recently, the nucleon electromagnetic and axial form factors have received special
attention in Refs. [6] and [7] using dynamical Wilson and asqtad fermions. Another important milestone is the advent
of full domain-wall calculations, see Refs. [8, 9], and of dynamical twisted-mass fermions [10]. Disconnected diagrams
play a key role in an ongoing study of the strange quark content of the nucleon [11]. For reviews and progress reports
on the current state of the field, see Refs. [12–15].

Over the past years several of us have reported on hadron structure measurements using mixed action calculations
with 2+1 flavors of dynamical asqtad sea quarks [16, 17] — corresponding to degenerate u, d quarks + the strange
quark — and domain wall valence quarks [18–22]. A significant milestone was reached in Ref. [20], which summarized
our findings for higher moments of generalized form factors. The current paper represents a major update of that
work: it includes the observables presented previously with higher statistics, as well as an additional, lower pion mass
calculation. Beyond that, it covers form factors and chiral extrapolations of the forward moments that were not shown
previously. The propagators and technology underlying these calculations have not only successfully been applied to
nucleon structure, but have also turned out to be enormously valuable to other studies, see e.g. [23–25] and references

∗Current address: NuAS, Stubenrauchstr. 3, 12357 Berlin
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Flattening of GFFs with increasing n

Lattice results consistent with 
narrowing of transverse size with 
increasing x Burkardt

Transverse radii

Transverse Structure
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46

Myhrer  & Thomas, 
Phys.Lett.B663:302 (2008)

“Missing spin”: orbital 
angular momentum of quarks 
and anti-quarks

A.Thomas, Phys. Rev. Lett.
101:102003 (2008)

Lu

Ld

Lu +ve, Ld small, -ve at model 
scale

Origin of nucleon spin - III
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O
µν
T = q̄σµνγ5q

Transverse Spin in Nucleon
Measuring generalized form factors corresponding to tensor 
current gives provides information on transverse spin of nucleon 

2

FIG. 1: Results for the generalized form factors BT (n=1,2)0(t).
The corresponding p-pole parametrizations are shown by the
shaded error bands.

bj
⊥

εjisi
⊥

and bj
⊥

εjiSi
⊥

. The fourth line in Eq.(1) corre-
sponds to a quadrupole term. The (derivatives of the)
three GFFs Bn0(b⊥), BTn0(b⊥) and ÃTn0(b⊥) thus de-
termine how strongly the orbital symmetry in the trans-
verse plane is distorted by the dipole and the quadrupole
terms.

The GFFs An0(t), ATn0(t), . . . parametrize off-forward
nucleon matrix elements of certain local quark operators.
For the lowest moment n = 1 one finds A10(t) = F1(t),
B10(t) = F2(t) and AT10(t) = gT (t) where F1, F2 and
gT are the Dirac, Pauli and tensor nucleon form factors,
respectively. A concrete example of the corresponding
parametrization for n = 1 is given by [10, 11]

〈P ′Λ′|Oµν
T |PΛ〉 = u(P ′, Λ′)

{
σµνγ5

(
AT10(t)

−
t

2m2
ÃT10(t)

)
+

εµναβ∆αγβ

2m
BT10(t)

−
∆[µσν]αγ5∆α

2m2
ÃT10(t)

}
u(P, Λ) , (3)

where Oµν
T = q̄σµνγ5q is the lowest element of the tower

of local leading twist tensor (quark helicity flip) oper-
ators. Parametrizations for higher moments n ≥ 1 in
terms of tensor GFFs and their relation to GPDs are
given in [11]. As it is very challenging to access tensor
GPDs in experiment [12], input from lattice QCD calcu-
lations is crucial in this case.

Simulation results.—Our lattice calculations are based
on configurations generated with nf = 2 dynamical non-

FIG. 2: Study of discretization errors of the tensor charge
AT10(t=0) = gT (t=0) for up- and down-quarks at a pion mass
of mπ ≈ 600 MeV.

perturbatively O(a) improved Wilson fermions and Wil-
son gluons. Simulations have been performed at four
different couplings β = 5.20, 5.25, 5.29, 5.40 with up
to five different κ = κsea values per β, on lattices of
V × T = 163 × 32 and 243 × 48. The lattice spacings
are below 0.1 fm, the range of pion masses extends down
to 400 MeV and the spatial volumes are as large as
(2.1 fm)3. The lattice scale a in physical units has been
set using a Sommer scale of r0 = 0.467 fm [13, 14]. The
computationally demanding disconnected contributions
are not included. We expect, however, that they are
small for the tensor GFFs [15]. We use non-perturbative
renormalization [16] to transform the lattice results to
the MS scheme at a scale of 4 GeV2. The calculation
of GFFs in lattice QCD follows standard methods (see,
e.g., [17–19]).

In Fig. 1, we show as an example results for the GFFs

B
u,d
T (n=1,2)0(t), corresponding to the lowest two moments

n = 1, 2 of the GPD E
u,d
T (x, ξ, t) [20], as a function of

the momentum transfer squared t, for a pion mass of
mπ ≈ 600 MeV, a lattice spacing of a ≈ 0.08 fm and
a volume of V ≈ (2 fm)3. For the extrapolation to the
forward limit (t = 0) and in order to get a functional
parametrization of the lattice results, we fit all GFFs us-
ing a p-pole ansatz F (t) = F0/(1 − (t/(p m2

p))
p with the

three parameters F0 = F (t=0), mp and p for each GFF.
We consider this ansatz [21] to be more physical than
previous ones as the rms-radius 〈r2〉1/2 ∝ m−1

p is inde-
pendent of p. It turns out that in most cases the statistics
is not sufficient to determine all three parameters from
a single fit to the lattice data. For a given generalized
form factor, we therefore fix the power p first, guided by
fits to selected datasets, and subsequently determine the
forward value F0 and the p-pole mass mp by a full fit to
the lattice data. Some GFFs show a quark flavor depen-
dence of the value of p, which has already been observed
in [22] for the Dirac form factor. For the examples in
Fig. 1, we find for u-quarks B

u
T10(t=0) = 3.34(8) with

mp = 0.907(75) GeV, B
u
T20(t=0) = 0.750(32) with mp =

1.261(40) GeV and for d-quarks B
d
T10(t=0) = 2.06(6)

with mp = 0.889(48) GeV, B
d
T20(t=0) = 0.473(22) with

QCDSF/UKQCD, PRL, 0612021

3

FIG. 3: Pion mass dependence of the generalized form factors
BT (n=1,2)0(t=0) for up-quarks. The shaded error bands show
extrapolations to the physical pion mass based on an ansatz
linear in m2

π. The symbols are as in Fig. 2.

mp = 1.233(27) GeV (all for p = 2.5). We have checked
that the final p-pole parametrizations only show a mild
dependence on the value of p chosen prior to the fit. In
order to see to what extent our calculation is affected
by discretization errors, we plot as an example in Fig. 2
the tensor charge AT10(t=0) = gT (t=0) versus the lat-
tice spacing squared, for a fixed mπ ≈ 600 MeV. The
discretization errors seem to be smaller than the statis-
tical errors, and we will neglect any dependence of the
GFFs on a in the following. Taking our investigations of
the volume dependence of the nucleon mass and the axial
vector form factor gA [13, 23] as a guide, we estimate that
the finite volume effects for the lattices and observables
studied in this work are small and may be neglected.

As an example of the pion mass dependence of our
results, we show in Fig. 3 the GFFs B

u
T (n=1,2)0(t=0) ver-

sus m2
π. Unfortunately we cannot expect chiral pertur-

bation theory predictions [24] to be applicable to most
of our lattice data points, for which the pion mass is
still rather large. To get an estimate of the GFFs
at the physical point, we extrapolate the forward mo-
ments and the p-pole masses using an ansatz linear in
m2

π. The results of the corresponding fits are shown as
shaded error bands in Fig. 3. At mphys

π = 140 MeV,

we find B
u
T10(t=0) = 2.93(13), B

d
T10(t=0) = 1.90(9) and

B
u
T20(t=0) = 0.420(31), B

d
T20(t=0) = 0.260(23). These

comparatively large values already indicate a significant
impact of this tensor GFF on the transverse spin struc-
ture of the nucleon, as will be discussed below. Since the
(tensor) GPD ET can be seen as the analogue of the (vec-
tor) GPD E, we may define an anomalous tensor mag-
netic moment [7], κT ≡

∫
dxET (x, ξ, t=0) = BT10(t=0),

similar to the standard anomalous magnetic moment
κ =

∫
dxE(x, ξ, t=0) = B10(t=0) = F2(t=0). While the

u- and d-quark contributions to the anomalous magnetic
moment are both large and of opposite sign, κup

exp ≈ 1.67
and κdown

exp ≈ −2.03, we find large positive values for
the anomalous tensor magnetic moment for both flavors,

FIG. 4: Lowest moment (n = 1) of the densities of un-
polarized quarks in a transversely polarized nucleon (left)
and transversely polarized quarks in an unpolarized nucleon
(right) for up (upper plots) and down (lower plots) quarks.
The quark spins (inner arrows) and nucleon spins (outer ar-
rows) are oriented in the transverse plane as indicated.

κup
T,latt ≈ 3.0 and κdown

T,latt ≈ 1.9. Similarly large positive
values have been obtained in a recent model calculation
[25]. Large Nc considerations predict κup

T ≈ κdown
T [26].

Let us now discuss our results for ρn(b⊥, s⊥, S⊥) in
Eq. (1). For the numerical evaluation we Fourier trans-
form the p-pole parametrization to impact parameter
(b⊥) space. The parametrizations of the impact param-
eter dependent GFFs then depend only on the p-pole
masses mp and the forward values F0. Before showing
our final results, we would like to note that the mo-
ments of the transverse spin density can be written as
sum/difference of the corresponding moments for quarks
and antiquarks, ρn = ρn

q + (−1)nρn
q , because vector and

tensor operators transform identically under charge con-
jugation. Although we expect contributions from anti-
quarks to be small in general, only the n-even moments
must be strictly positive. In Fig. 4, we show the lowest
moment n = 1 of spin densities for up and down quarks
in the nucleon. Due to the large anomalous magnetic
moments κu,d, we find strong distortions for unpolarized
quarks in transversely polarized nucleons (left part of the
figure). This has already been discussed in [6], and can
serve as a dynamical explanation of the experimentally
observed Sivers-effect. Remarkably, we find even stronger
distortions for transversely polarized quarks s⊥ = (sx, 0)
in an unpolarized nucleon, as can be seen on the right
hand side of Fig. 4. The densities for up and for down
quarks in this case are both deformed in positive by direc-
tion due to the large positive values for the tensor GFFs

B
u
T10(t=0) and B

d
T10(t=0), in strong contrast to the dis-

tortions one finds for unpolarized quarks in a transversely

Lowest moment BT10(t)
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