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of the measurements with the others, exclusive averages,
leaving out one of the 8 measurements at a time, are cal-
culated. These are presented in the 5th column of table 1,
together with the corresponding number of standard de-
viations 5 between the exclusive mean and the respective
single measurement.

As can be seen, the values of exclusive means vary only
between a minimum of 0.11818 and a maximum 0.11876.
Note that in the case of these exclusive means and ac-
cording to the ”rules” of calculating their overall errors,
in four out of the eight cases small error scaling factors
of g = 1.06...1.08 had to be applied, while in the other
cases, overall correlation factors of about 0.1, and in one
case of 0.7, had to be applied to assure χ2/ndf = 1. Most
notably, the average value αs(MZ0) changes to αs(MZ0) =
0.1186±0.0011when omitting the result from lattice QCD.

5 Summary and Discussion

In this review, new results and measurements of αs are
summarised, and the world average value of αs(MZ0), as
previously given in [7,28,6], is updated. Based on eight
recent measurements, which partly use new and improved
N3LO, NNLO and lattice QCD predictions, the new av-
erage value is

αs(MZ0) = 0.1184± 0.0007 ,

which corresponds to

Λ(5)

MS
= (213 ± 9 )MeV .

This result is consistent with the one obtained in the pre-
viuos review three years ago [28], which was αs(MZ0) =
0.1189±0.0010. The previous and the actual world average
have been obtained from a non-overlapping set of single
results; their agreement therefore demonstrates a large de-
gree of compatibility between the old and the new, largely
improved set of measurements.

The individual mesurements, as listed in table 1 and
displayed in figure 5, show a very satisfactory agreement
with each other and with the overall average: only one
out of eight measurements exceeds a deviation from the
average by more than one standard deviation, and the
largest deviation between any two out of the eight results,
namely the ones from τ decays and from structure func-
tions, amounts to 2 standard deviations 6.

There remains, however, an apparent and long-standing
systematic difference: results from structure functions pre-
fer smaller values of αs(MZ0) than most of the others, i.e.
those from e+e− annihilations, from τ decays, but also
those from jet production in deep inelastic scattering. This
issue apparently remains to be true, although almost all of
the new results are based on significantly improved QCD

5 The number of standard deviations is defined as the
square-root of the value of χ2.

6 assuming their assigned total errors to be fully uncorre-
lated.

predictions, up to N3LO for structure functions, τ and Z0

hadronic widths, and NNLO for e+e− event shapes.
The reliability of “measurements” of αs based on “ex-

periments” on the lattice have gradually improved over
the years, too. Including vaccum polarisation of three light
quark flavours and extended means to understand and cor-
rect for finite lattice spacing and volume effects, the overall
error of these results significally decreased over time, while
the value of αs(MZ0) gradually approached the world aver-
age. Lattice results today quote the smallest overall error
on αs(MZ0); it is, however, ensuring to see and note that
the world average without lattice results is only marginally
different, while the small size of the total uncertainty on
the world average is, naturally, largely influenced by the
lattice result.
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Fig. 6. Summary of measurements of αs as a function of the
respective energy scale Q. The curves are QCD predictions for
the combined world average value of αs(MZ0), in 4-loop ap-
proximation and using 3-loop threshold matching at the heavy
quark pole masses Mc = 1.5 GeV and Mb = 4.7 GeV. Full sym-
bols are results based on N3LO QCD, open circles are based on
NNLO, open triangles and squares on NLO QCD. The cross-
filled square is based on lattice QCD. The filled triangle at
Q = 20 GeV (from DIS structure functions) is calculated from
the original result which includes data in the energy range from
Q =2 to 170 GeV.

In order to demonstrate the agreement of measure-
ments with the specific energy dependence of αs predicted
by QCD, in figure 6 the recent measurements of αs are
shown as a function of the energy scale Q. For those results
which are based on several αs determinations at different
values of energy scales Q, the individual values of αs(Q)

• QCD with massless quarks 

➡  no scale parameters

• RGE introduces a momentum scale Λ

➡  interaction strength =1

• Renormalization scheme dependence of Λ

• World data average (2009)

that corresponds to

QCD Coupling Constant in pQCD

Bethke, Eur.Phys.J. C64
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QCD Running Coupling Constant
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QCD predicts the shape of the running coupling constant, not its value
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Intermediate energy?
Perturbative to nonperturbative transition?



Effective Charges

the UV-regulated theory, is thus equivalent to the renor-

malization of the vector potential and field strength: A!
ren ¼

Z"1=2
3 A!

0 , G
!"
ren ¼ Z"1=2

3 G!"
0 with a rescaled Lagrangian

density Lren
QCD ¼ Z"1

3 L0
QCD ¼ ðgphys=g0Þ"2L0. In lattice

gauge theory, the lattice spacing a serves as the UV regu-
lator, and the renormalized QCD coupling is determined
from the normalization of the gluon field strength as it
appears in the gluon propagator. The inverse of the lattice
size L sets the mass scale of the resulting running coupling.
As in lattice gauge theory, color confinement in AdS/QCD
reflects nonpertubative dynamics at large distances. The
QCD couplings defined from lattice gauge theory and the
soft-wall holographic model are thus similar in concept,
and both schemes are expected to have similar properties in
the nonperturbative domain, up to a rescaling of their
respective momentum scales.

The gauge/gravity correspondence has also been used to
study the running coupling of the dual field theory. One can
modify the dynamics of the dilaton in the AdS space to
simulate the QCD # function in the UV domain [30–36].
For example, a #-function ansatz of the boundary field
theory is used as input in Refs. [32–36] to modify the AdS
metrics assuming the correspondence between the AdS
variable z and the energy scale E of the conformal field
theory, E% 1=z, as discussed in Ref. [37]. In our paper, the
effective QCD coupling is identified by using the precise
mapping from z in AdS space to the transverse impact
variable $ in LF QCD.

IV. COMPARISON OF THE HOLOGRAPHIC
COUPLINGWITH OTHER EFFECTIVE CHARGES

The effective coupling %AdSðQ2Þ (solid line) is com-
pared in Fig. 1 with experimental and lattice data. For
this comparison to be meaningful, we have to impose the
same normalization on the AdS coupling as the g1 cou-
pling. This defines %AdS

s normalized to the g1 scheme

%AdS
g1 ðQ2 ¼ 0Þ ¼ &: (10)

A similar value for the normalization constant is derived
in Ref. [22] from the AdS/CFT prediction for the current-
current correlator. The value of the five-dimensional cou-
pling found in [22] for a SUð2Þ flavor gauge theory is

ðg25ÞSUð2Þ ¼ 12&2R=NC, and thus ðg
2
5

4&ÞSUð2Þ ¼ & for NC ¼
3 in units R ¼ 1.

The couplings in Fig. 1 agree well in the strong coupling
regime up to Q% 1 GeV. The value ' ¼ 0:54 GeV has
been determined from the vector meson principal Regge
trajectory [7]. The lattice results shown in Fig. 1 from
Ref. [38] have been scaled to match the perturbative UV
domain. The effective charge %g1 has been determined in
Ref [39] from several experiments. Figure 1 also displays
other couplings from different observables as well as %g1 ,
which is computed from the Bjorken sum rule [12] over a
large range of momentum transfer (continuous band). At

Q2 ¼ 0 one has the constraint on the slope of %g1 from the
Gerasimov-Drell-Hearn (GDH) sum rule [40], which is
also shown in the figure. The results show no sign of a
phase transition, cusp, or other nonanalytical behavior, a
fact which allows us to extend the functional dependence
of the coupling to large distances. The smooth behavior of
the holographic strong coupling also allows us to extrapo-
late its form to the perturbative domain. This is discussed
further in Sec. VI.
The hadronic model obtained from the dilaton-modified

AdS space provides a semiclassical first approximation to
QCD. Color confinement is introduced by the harmonic
oscillator potential, but effects from gluon creation and
absorption are not included in this effective theory. The
nonperturbative confining effects vanish exponentially at
large momentum transfer [Eq. (9)], and thus the logarith-
mic falloff from pQCD quantum loops will dominate in
this regime.
It is interesting to illustrate what one expects in an

augmented model which contains the standard pQCD con-
tributions. We can use the similarity of the AdS coupling to
the effective charge %g1 at small scales as guide on how to
join the perturbative and nonperturbative regimes. The fit
to the data %fit

g1 from Ref. [39] agrees with pQCD at high
momentum. Thus, the %g1ðQ2Þ coupling provides a guide
for the analytic form of the coupling over all Q2. We write

%AdS
Modified;g1

ðQ2Þ ¼ %AdS
g1 ðQ2ÞgþðQ2Þ þ %fit

g1ðQ2Þg"ðQ2Þ:
(11)

Here, %AdS
g1 is given by Eq. (9) with the normalization (10)

[continuous line in Fig. 1] and %fit
g1 is the analytical fit to the
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FIG. 1 (color online). The effective coupling from LF holo-
graphic mapping for ' ¼ 0:54 GeV is compared with effective
QCD couplings extracted from different observables and lattice
results. Details on the comparison with other effective charges
are given in Ref. [39].

NONPERTURBATIVE QCD COUPLING AND ITS # . . . PHYSICAL REVIEW D 81, 096010 (2010)

096010-5

[Brodsky et al., Phys.Rev.D81]
[Deur et al., Phys.Lett.B60]

The non-perturbative approach:

• Importance of finite couplings

• Taming the Landau pole 

The non-perturbative extraction:

• Effective couplings from phenomenology

• Dimensional transmutation (RG-improved)

➡  from RS dependence to Observable 
dependence (à la Grunberg)



Nonperturbative Gluon Propagator

��1(Q2) = Q2 + m2(Q2)

m2(Q2) = m2
0

⇤
ln

�
Q2 + �m2

0

�2

⇥ ⇧
ln

�
�m2

0

�2

⇥⌅�1��

m0 ⇥ �� 2�

Solving the Schwinger-Dyson eqs ...  J. M. Cornwall, Phys. Rev. D26, 1453 (1982)
A. C. Aguilar and J. Papavassiliou, JHEP0612, 012 (2006) 

Gluon Mass as IR Regulator

• effective gluon mass
phenomenological estimates

• Solution free of Landau pole
•  Freezes in the IR
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NP Momentum-dependence of the Coupling Constant

�NP(Q2)
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[A.C., Vento & Scopetta, Eur.Phys.J.A47]



Hadron Structure Phenomenology

Final State Interaction and Parton Distribution Functions



Hard Probes and Factorization

Parton Model
High energy photon Q2

Fast-moving proton
Bjorken scaling

Small size configuration ⇒ Hard Probes ⇒ Hard processes

Deep Inelastic Scattering

proton

parton
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Hadronic tensor ⇒

Hard

Soft



Hard Probes and Factorization

Parton Model
High energy photon Q2

Fast-moving proton
Bjorken scaling

Small size configuration ⇒ Hard Probes ⇒ Hard processes

Deep Inelastic Scattering

proton

parton

photon
electron
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Factorization
& factorization scale



Hadronic matrix elements to f(x, kT)
⇓

Number of independent structure functions
↕

 Number of Lorentz scalars +hermiticity+parity invariance+Time-reversal invariance  

Transverse Momentum Dependent PDFs

+ + + + ...

•  Relaxing Time-reversal invariance ⇒ naive T-odd functions

Sivers & Boer-Mulders functions

• Existence of Final State Interactions (FSI) at leading-order

• Importance of the gauge link

Sivers, Phys.Rev.D41
Boer & Mulders, Phys.Rev.D57

Brodsky, Hwang & Schmidt, Phys.Lett.B530

(p,S)(p,S)

(k,s) (k,s)



T-odd TMDs

• Matrix element of low twist operator

• Importance of gauge link

L⇤�T
(⇥, ⇥�) = Pexp

�
�ig

⇤ ⇥

��
A+(��, �⇥T ) d��

⇥

f⇤q
1T (x, kT ) = � M

2kx

⇥
d⇥�d2�⇥T

(2⇤)3
e�i(xp+���↵kT ·↵�T )

⇥ 1
2

�

Sy=�1,1

Sy ⇧PSy|⌅q(⇥
�, �⇥T )L†

↵�T
(⇤, ⇥�) �+ L0(⇤, 0)⌅q(0, 0)|PSy⌃ + h.c.

Formalism

Models

The Sivers function f ⊥Q
1T (x , kT )

⇒ Distribution of unpolarized quarks inside a transversely polarized proton

−

The Boer-Mulders functions h⊥Q
1 (x , kT )

⇒ Distribution of transversely polarized quarks inside a unpolarized proton

−

• non-perturbative quantities −→ not calculable in QCD

• we use models for the proton −→ not an exact calculation

• goal −→ insights into microscopic mechanisms

• HERE: formalisms for

! MIT bag model e.g. [Jaffe, PRD11]

! Constituent Quark Models (CQM) e.g. [de Rújula, Georgi & Glashow, PRD12]

A. Courtoy (INFN-Pavia) CQM & Bag 23/06/2010 6/21•  holds in covariant gauges
•  process dependent



Hadron ⇔ Constituent quarks  ⇔ Current quarks

Nonperturbative vs. Perturbative QCD

Models of Hadron Structure Renormalization Group Eqs.

n

Hadronic Models



Observable
• calculated in hadronic model
• at scale μ0

• switch on QCD evolution
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Observable
• calculated in hadronic model
• at scale μ0

• switch on QCD evolution

Hadron ⇔ Constituent quarks  ⇔ Current quarks

Nonperturbative vs. Perturbative QCD

Models of Hadron Structure Renormalization Group Eqs.

n

?

Hadronic Models



Parisi & Petronzio, Phys. Lett. B 62 (1976) 331
Traini et al, Nucl. Phys. A 614, 472 (1997)

Hadronic Scale from collinear PDFs, e.g. CTEQ, GRV,...

We use  RGE and one first principle based assumption.
Then we set scenarios ...
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Hadronic Scale from collinear PDFs, e.g. CTEQ, GRV,...

We use  RGE and one first principle based assumption.
Then we set scenarios ...

⇤
(uv + dv)

�
µ2

0
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n=2

= 1

⇤
(uv + dv)

�
Q2 = 10GeV2

⇥⌅
n=2

= 0.36

Say there exists a scale at which there is no sea and no gluon, then

QCD evolution introduces gluons and sea quarks:

DATA= PDFs parameterization

R.G.Roberts
“The Structure of the Proton”



Parisi & Petronzio, Phys. Lett. B 62 (1976) 331
Traini et al, Nucl. Phys. A 614, 472 (1997)

Evolve in energy until 2nd moment=1
Find μ02~0.1GeV2  +Δμ02

Hadronic Scale from collinear PDFs, e.g. CTEQ, GRV,...
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• Ambiguity Sivers function and Qiu-Sterman function

• Model dependent definition of the FSI and of the proton

• TMD evolution: Coupled CSS and RGE -> two scales ![Aybat et al., PRD85]

• Definition of momentum regions                                [Bacchetta et al., JHEP 0808]

• Redefinition of both scale for model calculations (in collaboration with T. Rogers)

• Correspondance effective coupling from the soft blob with pQCD

•  [Brodsky et al., Phys.Rev.D81] À la Grunberg? [Phys. Rev. D29]

• Commensurate Scale Relations          [Brodsky & Lu, Phys. Rev. D251]

Work in progress for T-odd TMDs



Hadron Structure Phenomenology

Parton-Hadron Duality



Parton-Hadron Duality
Introduction (2)

Present in Nature in different aspects:

• e+ - e− → hadrons ≡
∑

q (e+e− → qq̄) ⇒ σhadrons ≡
∑

q

σ̂q

• ep → eX ⇒ dσ ≈
∑

q

∫
dx q(x, Q2)dσ̂q

• ep → ehX ⇒ dσ ≈
∑

q

∫
dx q(x, Q2)Dh(z,Q2)dσ̂q

• e→p
⇒⇐ → e→X

• eA → eX

• τ → ν+ hadrons

• semi-leptonic decay of heavy quarks

• γp → π+ + n

Alessandra Fantoni Frascati, First Workshop on Quark-Hadron Duality and the Transition to pQCD, June 6-8, 2005 3

Complementarity between Parton and Hadron descriptions of observable

 [Poggio, Quinn & Weinberg, Phys Rev D13]

Data (2)

e+ - e− → hadrons

......

ep → eX

I. Niculescu et al., PRL 85 (2000) 1182,

I. Niculescu et al., PRL 85 (2000) 1186

Alessandra Fantoni Frascati, First Workshop on Quark-Hadron Duality and the Transition to pQCD, June 6-8, 2005 5
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Structure functions 
Resonance region ⇔ Scaling region
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[Bloom & Gilman, Phys.Rev.Lett.25]
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Talk by W. Melnitchouk



Two Complementary Approaches to Structure Functions3 approches (3)

c) Comparison between SF integrals in RES & DIS regions, in the same x interval

Ires(Q2) =
∫ xM

xm

FRes
2 (x, Q2) dx

IDIS(Q2) =
∫ xM

xm

FDIS
2 (x, Q2) dx

Γ̃res
1 (Q2) =

∫ xM

xm

gRes
1 (x, Q2) dx

Γ̃DIS
1 (Q2) =

∫ xM

xm

gDIS
1 (x, Q2) dx

g1 = A1 · F2
2x(1+R)

(xM ÷ xm) ⇐⇒ W 2
m ÷ W 2

M # 1 ÷ 4 GeV2 ∀ Q2

R = IRes/IDIS = 1 ⇐= Duality fulfilled =⇒ R = Γ̃Res
1 /Γ̃DIS

1 = 1

◦ Resonance region can be described in terms of quark degrees of freedom
◦ Distinction between resonance & DIS region is somehow artificial
=⇒ Duality provides access to large x where DIS data suffer for low statistic

Alessandra Fantoni Frascati, First Workshop on Quark-Hadron Duality and the Transition to pQCD, June 6-8, 2005 11

experiment

perturbative QCD

• Nonperturbative models analysis
• Perturbative analysis

xM÷xm ⇔ W2m÷W2M⇒ 1÷4 GeV2
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perturbative QCD

• Nonperturbative models analysis
• Perturbative analysis  [Bianchi, Fantoni & Liuti, PRD69]
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perturbative QCD

Start with NLO PDF and then ...
• Target Mass Corrections (TMC)
• Large-x Resummation (LxR)
• Higher-order in pQCD
• Higher-Twists

• Nonperturbative models analysis
• Perturbative analysis  [Bianchi, Fantoni & Liuti, PRD69]
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Large-x Resummation 
Cornerstones of QCD 477 

2 w , the mass squared of the final state in the y *  parton collision (figure 15), that really 
sets this limit (Brodsky and Lepage 1980). From figure 15 and 0 3.8.2, it is easily 
seen that 

Q2 
w 2  = - (1 - z )  

2 
(4.70) 

for the basic subprocess, while the mass squared of the final state in the y*N collision 
is W 2  = Q2(1  -x ) /x  + M N 2 .  Thus equation (4.69) becomes (Amati et a1 1980) 

1 2 

a aFNS In Q2 (x, Q 2 ) =  X dzFNS(? ,  Z Q 2 ) ( ~ P q ~ o ) ( ~ ) + ( ~ ) z ~ q ~ 1 ) ( z ) )  21r + (4.71) 21r 

where because (equation (2.19)) 
2 

2 2 Po 2 2  
a s ( w  )=a,(Q ) - -aa , (Q  ) l n x - .  I .  

41r Q 
the term in Pqq(l) like -$30Pqq‘o’In (1-z) has now been summed into the leading 
term, leaving Pqq(l) with no such terms. Moreover, w 2  as the argument of a ,  
sums not just the O(as2) terms into the leading term, but all higher orders too. 
Equation (4.71) is believed to sum all the leading double logarithm terms into the 
first term too (Ciafaloni 1980). Terms of lower order in In (1  - 2 )  cannot, of course, 
be summed into the as term, since their contribution depends on the gauge. Neverthe- 
less, we have in equation (4.71) succeeded in summing the double log terms of all 
orders into the running coupling, rather as the renormalisation group allowed the 
single logs to be summed. Though potentially large logarithms still remain, equation 
(4.71) does provide us with a satisfactory interpolation formula from the regime in 
which Q 2  - W 2  >>A2, to which the renormalisation group applies, to where Q 2  >> W 2  >> 
A’. Equation (4.71) thus goes beyond equation (4.1) for moments. Whether it allows 
the further transition to the regime Q 2  >> W 2  - A’, we will come to shortly. Moreover, 
the 1/z in w 2  equation (4.70), is not necessarily the correct way to treat the l n t  
factors in Pq4(’’. Since these do not affect the large n behaviour of the moments, we 
are free to use z w 2  or t 2 w 2 ,  etc, as the argument of as. Nevertheless, w 2  is physically 
most natural. 

Now notice, most importantly, that since it is the region of z - 1 that gives the 
dominant contribution to equation (4.68) (for all x ) ,  we always need the behaviour 
of a ,  for very small values of its argument, equation (4.71). However, this double 
log summation has given a ,  a time-like argument, equation (4.70). It has the same 
cuts as the y*q  amplitude (figure 19), the discontinuity of which is related to the 
structure function. Thus, just as in 80 1.4, 1.5 and 2.3, we must perform a perturbative 
expansion in the space-like regime, where q 2  = -QZ and? w are both negative and 
far from any physical thresholds. The large logarithms are then summed and the 
resulting series in a ,  assumed sensible. We then analytically continue this amplitude 
to the time-like w 2  regime and, in taking its discontinuity, remember that a s ( w 2 )  is 
complex too. This will then involve the real and imaginary parts of a,, As discussed 
in 0 2.3, las(w2)) will be a more natural expansion parameter. This will sum terms of 
O(aS3) and higher, which also give gauge-invariant contributions into the leading 
order-see 8 5 . 5  for a more exact discussion. Though the form of Ias(w2)1 for w 2 < A 2  

i We use u 2  for the y*q  energy in its centre of mass and W 2  for that of the full y*N process. Thus at 
fixed Q2, neglecting masses, u 2  = W2(x = 2). 

2 

 Text Book, e.g. Cornerstones of QCD, M. Pennington.

Q2= 5 GeV2

z

k T
2 

M
A

X
 (

G
eV

2 )

1

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k’ 

q 

P 
P’ 

l 

k’+q 

k 

|Amplitude|2 for ϒ*P ! (final quark) + g + X !  

 

Disregarding z-dependence in kT integration limit  

Without LxR, upper limit =Q2

• Large invariants: Λ2≪W2≪Q2

•  Argument for αs is ω2, mass square of final state of γ* parton collision
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2 w , the mass squared of the final state in the y *  parton collision (figure 15), that really 
sets this limit (Brodsky and Lepage 1980). From figure 15 and 0 3.8.2, it is easily 
seen that 

Q2 
w 2  = - (1 - z )  

2 
(4.70) 

for the basic subprocess, while the mass squared of the final state in the y*N collision 
is W 2  = Q2(1  -x ) /x  + M N 2 .  Thus equation (4.69) becomes (Amati et a1 1980) 

1 2 

a aFNS In Q2 (x, Q 2 ) =  X dzFNS(? ,  Z Q 2 ) ( ~ P q ~ o ) ( ~ ) + ( ~ ) z ~ q ~ 1 ) ( z ) )  21r + (4.71) 21r 

where because (equation (2.19)) 
2 

2 2 Po 2 2  
a s ( w  )=a,(Q ) - -aa , (Q  ) l n x - .  I .  

41r Q 
the term in Pqq(l) like -$30Pqq‘o’In (1-z) has now been summed into the leading 
term, leaving Pqq(l) with no such terms. Moreover, w 2  as the argument of a ,  
sums not just the O(as2) terms into the leading term, but all higher orders too. 
Equation (4.71) is believed to sum all the leading double logarithm terms into the 
first term too (Ciafaloni 1980). Terms of lower order in In (1  - 2 )  cannot, of course, 
be summed into the as term, since their contribution depends on the gauge. Neverthe- 
less, we have in equation (4.71) succeeded in summing the double log terms of all 
orders into the running coupling, rather as the renormalisation group allowed the 
single logs to be summed. Though potentially large logarithms still remain, equation 
(4.71) does provide us with a satisfactory interpolation formula from the regime in 
which Q 2  - W 2  >>A2, to which the renormalisation group applies, to where Q 2  >> W 2  >> 
A’. Equation (4.71) thus goes beyond equation (4.1) for moments. Whether it allows 
the further transition to the regime Q 2  >> W 2  - A’, we will come to shortly. Moreover, 
the 1/z in w 2  equation (4.70), is not necessarily the correct way to treat the l n t  
factors in Pq4(’’. Since these do not affect the large n behaviour of the moments, we 
are free to use z w 2  or t 2 w 2 ,  etc, as the argument of as. Nevertheless, w 2  is physically 
most natural. 

Now notice, most importantly, that since it is the region of z - 1 that gives the 
dominant contribution to equation (4.68) (for all x ) ,  we always need the behaviour 
of a ,  for very small values of its argument, equation (4.71). However, this double 
log summation has given a ,  a time-like argument, equation (4.70). It has the same 
cuts as the y*q  amplitude (figure 19), the discontinuity of which is related to the 
structure function. Thus, just as in 80 1.4, 1.5 and 2.3, we must perform a perturbative 
expansion in the space-like regime, where q 2  = -QZ and? w are both negative and 
far from any physical thresholds. The large logarithms are then summed and the 
resulting series in a ,  assumed sensible. We then analytically continue this amplitude 
to the time-like w 2  regime and, in taking its discontinuity, remember that a s ( w 2 )  is 
complex too. This will then involve the real and imaginary parts of a,, As discussed 
in 0 2.3, las(w2)) will be a more natural expansion parameter. This will sum terms of 
O(aS3) and higher, which also give gauge-invariant contributions into the leading 
order-see 8 5 . 5  for a more exact discussion. Though the form of Ias(w2)1 for w 2 < A 2  

i We use u 2  for the y*q  energy in its centre of mass and W 2  for that of the full y*N process. Thus at 
fixed Q2, neglecting masses, u 2  = W2(x = 2). 
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 Text Book, e.g. Cornerstones of QCD, M. Pennington.
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Disregarding z-dependence in kT integration limit  

Without LxR, upper limit =Q2

• Large invariants: Λ2≪W2≪Q2

•  Argument for αs is ω2, mass square of final state of γ* parton collision
x-values
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Nonperturbative Coupling Constant & LxR

Work in progress with S. Liuti
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How we go further : Nonperturbative Coupling Constant from DSE

• Nonperturbative effects gathered in effective coupling αsNP

• Use of NP running coupling that scales to LO pQCD result
• Include in LxR 
• Parameterization of the realization of duality  

• Understand Higher-Twists ?

• Go to NNLO ?

Cornwall αsNP

3-4 free parameters 

(up to physical constrains) 



Nonperturbative QCD coupling 
from 

Phenomenology

Joint analysis: Chen, Courtoy, Deur, Liuti & Vento



Work in progress about αs at low energy

• Nonperturbative to perturbartive transition

• Final States Interactions and pQCD

• Errorbands to measurements (even if error on “model dependence” is immeasurable)

• Perturbative to nonperturbartive transition

• Realization of duality & parametrization via αsNP

• New data for F2 in the resonance region at JLab

• How to relate the coupling constant?

• Commensurate Scale Relations?                                  [Brodsky & Lu, Phys. Rev. D251]

•  RG-improved perturbation theory?                                      [Grunberg, Phys. Rev. D29]



Extraction of αs at low energy

• Polarized scattering from both proton and neutron
Deur et al. Phys.Lett. B650 (2007) 244-248   

Natale, PoS QCD-TNT09 (2009) 031

Bjorken  Sum Rule from JLab & GDH Sum Rule at Q2=0 GeV2

•  Deep Inelastic Scattering (DIS) at large Bjorken-x & parton-hadron duality

Liuti,  [arXiv:1101.5303 [hep-ph]]. 

• Semi-Inclusive DIS & Extraction of T-odd TMDs from SSAs
A.C., Vento & Scopetta, Eur. Phys. J. A47, 49 (2011)

Joint analysis: Chen, Courtoy, Deur, Liuti & Vento

http://inspirebeta.net/author/Deur%2C%20A.?recid=691957&ln=en
http://inspirebeta.net/author/Deur%2C%20A.?recid=691957&ln=en

