Calorimeter Options for Large Acceptance PVDIS Setup

E.Chudakov¹

¹Hall A, JLab

Calorimeter Workshop, JLab, Oct 2008

E.Chudakov

Oct 31, 2008

Calorimeter for Large Acceptance PVDIS 1

Outline

2 Apparatus

- Requirements and options
- Solenoidal Large Intensity Device (SoLID)

3 Calorimeter Options

Outline

2 Apparatus

- Requirements and options
- Solenoidal Large Intensity Device (SoLID)

Outline

2 Apparatus

- Requirements and options
- Solenoidal Large Intensity Device (SoLID)

ē−

Parity Violation in Electron Scattering at $Q^2 \ll M_Z^2$

Polarized beam on Unpolarized target

$$\sigma \propto |\mathbf{A}_{\gamma} + \mathbf{A}_{weak}|^2 \sim |\mathbf{A}_{\gamma}|^2 + 2\mathbf{A}_{\gamma}\mathbf{A}^*_{weak} + ...$$

$$A_{RL} = rac{\sigma_R - \sigma_L}{\sigma_R - \sigma_L} \sim rac{A_{weak}}{A_{\gamma}} \propto rac{G_F Q^2}{4\pi lpha} \mathbf{g}$$

$$\begin{split} \mathbf{g} &= g_A^e G_V^\intercal \pm g_V^e G_A^\intercal, \ \text{ depend on } \sin^2 \theta_W, \text{ kinem.} \\ \text{for } \mathbf{f} &\equiv \mathbf{I}^\pm \quad \mathbf{g} \propto (1 - 4 \sin^2 \theta_W) < 0.05 \end{split}$$

Observable $A \sim 10^{-7} - 10^{-3}$, sensitive to:

- Electroweak coupling: \Rightarrow CM tests Magnification: $\sin^2 \theta_W \sim 0.23 \Rightarrow \delta(\sin^2 \theta_W) \sim 0.02 \frac{\delta(A)}{A}$
- Target structure \Rightarrow unusual FF, PDF combinations

e

Jefferson Lab

PV DIS Asymmetry

 $\mathcal{L}^{eHadron} = \frac{G_F}{\sqrt{2}} \sum_{i} (C_{1i} \cdot j_A^e \cdot j_V^i + C_{2i} \cdot j_V^e \cdot j_A^i)$

where *i* are partons (quarks)

 $egin{aligned} C_{1q} &= 2g_A^e g_V^i = -C_{1\overline{q}} pprox & -t_{3iL} + 2Q_{ei}s_W^2 \ C_{2q} &= 2g_V^e g_A^i = +C_{2\overline{q}} pprox & -t_{3iL}(1-4s_W^2) \end{aligned}$

Cahn,Gilman 1978 $A_{PV} = \frac{G_F Q^2}{2\sqrt{2}\pi\alpha} [a(x) + Y(y) \cdot b(x)]$ $Y(y) = \frac{1 - (1 - y)^2}{1 + (1 - y)^2}, y = \frac{\nu}{E}, x = x_{Bj}$

 $a(x) = \sum_{i} f_{i}(x) C_{1i} Q_{ei} / \sum_{i} f_{i}(x) Q_{ei}^{2}$ $b(x) = \sum_{i} f_{i}(x) C_{2i} Q_{ei} / \sum_{i} f_{i}(x) Q_{ei}^{2}$

 $f_i(x)$ - quark distribution functions

Isoscaler target Deuterium:f(x) largely cancel

 $q^{\pm} \equiv q \pm \overline{q}$ in proton

$$\begin{aligned} a(x) &= \frac{3}{10} (2C_{1u} - C_{1d}) \left(1 + R_s(x) \right) \\ b(x) &= \frac{3}{10} (2C_{2u} - C_{2d}) \left(1 - R_a(x) \right) \end{aligned}$$

$$\begin{array}{ll} R_s(x) = & \frac{2s^+}{u^+ + d^+} \\ R_a(x) = & \frac{\overline{u} + \overline{d}}{u^+ + d^+} \end{array} \right\} \stackrel{large \ x}{\rightarrow} 0$$

$$A_{PV}(x, Q^2)/Q^2 \stackrel{\textit{large } x}{
ightarrow} \mathcal{A}(y)$$

Corrections from:

- s-quarks, sea-quarks
- target mass
- higher twists

Prescott 1979 $s_W^2 = 0.22 \pm 0.02$ using SM

<u>Measurements</u> of the weak charges C_{1a} , C_{2a}

Existing measurements:

- PV-elastic in e⁻p, d, Be, C at Bates, Mainz, JLab
- PV-DIS in e^-d , $\mu^{\pm}C$ at SLAC. CERN

Atomic PV experiments

Planned measurements:

- PV-DIS in e⁻ d at Jlab 6 GeV (Hall A) $x \sim 0.3$
- PV-DIS in e⁻ d at Jlab 12 GeV (Hall C) $x \sim 0.3$

E.Chudakov

Program of PV DIS Study

Strategy

- Study hadronic physics first
- Use the hadronic results to measure the axial couplings

Required precise kinematics and broad range

- Two beam energies: 11,8.8 GeV
- Measure A_D in narrow bins of x, Q^2 with 1% precision
- Study the $A_D(Q^2)$ at 0.3 < x < 0.6 to constrain HT
- Search for CSV with $A_D(x)$ in 0.5 < x < 0.7
- Use x > 0.4, high Q^2 , Y data to measure C_{2q}

Requires:

A large acceptance and high rate magnetic spectrometer

E.Chudakov

Oct 31, 2008

Calorimeter for Large Acceptance PVDIS 6

DIS Parity Violation at X > 0.6 at 12 GeV

DIS Parity Violation at X > 0.6 at 12 GeV

Motivation: CSV, d/u, high twists $A \approx 10^{-4} \cdot Q^2 \sim 0.7 \cdot 10^{-3}$

Kinematics and Rates

- $22^{\circ} < \theta < 35^{\circ}$, $W^2 > 4$
- 50 μA, 40 cm LH 0.54fb⁻¹s⁻¹
- Rate 34kHz X > 0.55
- Rate 8.7kHz X > 0.65

acceptance = 100%, eff=50%

- 1% stat \Rightarrow 2 \cdot 10¹⁰ events
- X > 0.55: 13 days
- X > 0.65: 40 days

Calorimeter for Large Acceptance PVDIS 7

Other Potential Experiments

Experiments considered at 12 GeV

- SIDIS: transversity, etc. 2 paricles to detect
- $\gamma p \rightarrow J/\Psi p$ photoproduction close to threshold
- DVCS $e^- p \rightarrow e^- \gamma p$, $e^- l^+ l^- p$, ?

Requirements

Acceptance

- Working at $\mathcal{L} \sim 0.54 \mathrm{fb}^{-1} \mathrm{s}^{-1}$
- E' > 1.5 GeV to remove low energy e^-, π^-
- $E' < \infty$ no line of sight, to remove γ
- $\sigma E'/E' < 2\%$ energy resolution
- $\Delta \Omega > 0.3 str$ solid angle
- PID $e/\pi \sim 10^5$
- Trigger rate <20 kHz/DAQ

If it were easy - would have been done somewhere

Several options have been considered:

- Large solenoidal spectrometer a magnet leased from BaBar/CLEO/CDF...
- Double-todoid spectrometer
- Others much lower acceptance ...

Solenoidal Large Intensity Detector (SoLID)

BeBar magnet Altered yoke

EM calorimeters with optical readout

	Density	<i>X</i> ₀	R _M	λ_I	Refr.	τ	Peak	Light	Np.e. GeV	rad	<u>σE</u> F
Material	g/cm³	ст	ст	ст	index	ns	λ nm	yield			-
Crystals											
Nal(TI)**	3.67	2.59	4.5	41.4	1.85	250	410	1.00	10 ⁶	10 ²	1.5%/E ^{1/4}
Csl *	4.53	1.85	3.8	36.5	1.80	30	420	0.05	104	10 ⁴	$2.0\%/E^{1/2}$
CsI(TI)*	4.53	1.85	3.8	36.5	1.80	1200	550	0.40	10 ⁶	10 ³	1.5%/E ^{1/2}
BGO	7.13	1.12	2.4	22.0	2.20	300	480	0.15	10 ⁵	10 ³	$2.\%/E^{1/2}$
PbWO ₄	8.28	0.89	2.2	22.4	2.30	5/39%	420	0.013	104	10 ⁶	$2.0\%/E^{1/2}$
						15/60%	440				
						100/01%					
LSO	7.40	1.14	2.3		1.81	40	440	0.7	10 ⁶	10 ⁶	$1.5\%/E^{1/2}$
PbF ₂	7.77	0.93	2.2		1.82	Cher	Cher	0.001	10 ³	10 ⁶	$3.5\%/E^{1/2}$
Lead glass											
TF1	3.86	2.74	4.7		1.647	Cher	Cher	0.001	10 ³	10 ³	$5.0\%/E^{1/2}$
SF-5	4.08	2.54	4.3	21.4	1.673	Cher	Cher	0.001	10 ³	10 ³	$5.0\%/E^{1/2}$
SF57	5.51	1.54	2.6		1.89	Cher	Cher	0.001	10 ³	10 ³	$5.0\%/E^{1/2}$
Sampling: lead/scintillator											
SPACAL	5.0	1.6				5	425	0.3	10 ⁴	10 ⁶	$6.0\%/E^{1/2}$
Shashlik	5.0	1.6				5	425	0.3	10 ³	10 ⁶	$10.\%/E^{1/2}$

* - hygroscopic

Energy resolution

- Fluctuations of the track length (EM): $\frac{\sigma E}{E} \simeq \frac{0.005}{\sqrt{E}}$
- Sampling fluctuations (EM): ^{σE}/_E ≃ √E/√E, where *t* is the layer thickness in X₀ (B.Rossi),
 - $\sim \frac{0.1 \cdot \sqrt{t}}{\sqrt{E}}$ for lead absorber (t > 0.2) $> \frac{0.05}{\sqrt{E}}$
- Statistics of the observed signal (EM): $\frac{\sigma E}{E} > \frac{0.01}{\sqrt{E}}$
- Noise, pedestal fluctuations $\frac{\sigma E}{E} < \frac{0.01}{E}$
- Calibration drifts $\frac{\sigma E}{E} \sim 0.01$ for a large detector

Ideally, a large sampling calorimeter may have $\frac{\sigma E}{E} \simeq \frac{0.05}{\sqrt{E}} \oplus 0.01$

SpaCal (CERN, Frascatti, Hall D)

scintillating fibers / lead matrix

- Volume: Fiber/Pb/glue 48%/42%/10%
- X_o = 1.2 cm
- 5 g/cm³

- CERN original R&D
- KLOE (DAFNE) 5000 PMTs
- KLOE $\sigma E/E \approx 5.7\%/E^{1/2}$
- KLOE $\sigma \tau \approx 50/E^{1/2} + 50 \text{ ps}$

Critical for this resolution:

- uniformity
- fibers collected to the Ph.Det.
- Ph.Det. surface: 50% PMTs only? Mag. field?

Shashlyk Calorimeter

- Pb + scintillator sandwitch
- WLS fibers to the Ph.Det.
- Ph.Det. surface \sim 1%

• KOPIO: APDs
$$\frac{\sigma E}{E} \simeq \frac{0.03}{\sqrt{E}} \oplus 0.020$$

HERA-B Calorimeter

NIMA 580, 1209 (2007)

HERA-B Calorimeter (continue)

Parameter	Inner	Middle	Outer
Channels	2100	2128	1728
Cell size	2.23 cm	5.59 cm	11.18 cm
Absorber	W-Ni-Fe	Pb	Pb
X_{\circ}	0.558 cm	1.675 cm	1.675 cm
Moliere	1.24 cm	4.15 cm	4.15 cm
Depth in X_{\circ}	23	20	20
Volume Abs/Sc	2.2:1	1:2	1:2
WLS	Kuraray Y-11	BCF-91A	BCF-91A
p.e./GeV	130	800	1300
krad/year	5000	400	100
<u>σΕ</u> Ε	$\frac{0.21}{\sqrt{F}} \oplus 0.012$	$\frac{0.12}{\sqrt{F}} \oplus 0.014$	$\frac{0.11}{\sqrt{E}} \oplus 0.014$
$\sigma X, Y ext{ cm}$	$rac{1\cdot25}{\sqrt{E}}\oplus 0.022$	$\frac{1^{}.3\overline{7}}{\sqrt{E}} \oplus 0.028$	$\frac{2\dot{.}17}{\sqrt{E}} \oplus 0.028$

Apparatus

KOPIO Calorimeter

NIMA 584, 291 (2008)

KOPIO Calorimeter (continue)

Cell size	11 cm
Absorber	Pb 0.275 mm $ imes$ 300
Scintillator	BASF143E 1.5 mm
Hole	1.3 mm
Fiber	1.0 mm Y11-200 MS
Fibers/module	72×1.5 m
Fibers bunch OD	1.4 cm
X _o	3.49 cm
Moliere	5.98 cm
Density	2.75 g/cm ³
Depth in X_{\circ}	16
Total depth	65 cm
krad	100
APD	API OD=16 mm QE=94%
p.e./GeV	60000
<u>σE</u> E	$\frac{0.028}{\sqrt{E}} \oplus 0.020$
σt , ps	$\begin{array}{c} \sqrt{E} \\ \frac{72}{\sqrt{E}} \oplus \frac{14}{E} \end{array}$

