APEX High Rate VDC Analysis

Seamus Riordan University of Virginia spr4y@virginia.edu

Mathew Graham, SLAC Ole Hansen, Jefferson Lab Mike Paolone, University of South Carolina

for the APEX Collaboration

September 21, 2010

- HRS VDCs
- APEX Calibration
- High Rate Tracking Performance

HRS Vertical Drift Chambers

Basic VDC Operation

- Tracks enter nominally 45°, produce signals on 3-7 wires
- Drift time patterns among several wires matched to construct "cluster"
- 2 U-plane and 2 V-plane clusters fit to recreate full 3D track

• Requested for test run by PAC:

Prove that the vertical drift chambers (VDCs) can operate at a rate higher that 20 kHz/wire (that, according to the TAC report, is the maximum Hall A has operated till now).

- VDCs had not been run at such high rate (for extended period of time)
- Required to go to \sim 5 MHz (75 kHz/wire)
- Requires hardware modifications to run efficiently without severe aging

Modifications for performance up to 5 MHz (full experiment luminosity).

	Standard	APEX High Rate
HV	-4.0 kV	−3.5 kV
Disc.	LeCroy ($I_{\rm th} = 8 \ \mu A$)	JLab Custom ($I_{th} = 1 \mu A$)
Gas	60-40 Ar/CH ₂	60-40 Ar/CH ₂
Max Rate	500 kHz	5 MHz
Gain	$20 imes 10^3$	$25 imes 10^3$

• Max VDC current draw I/wire/cm $\,\sim$ 5 nA

• For APEX, Q_{VDC} < 0.1 C (no serious aging)

Timing Offset Calibration

- VDC requires software offsets for drift time
- Calibrated in groups of 16 wires (discriminator inputs)

 Calibration done by fitting time dist. peak and fixed at 1.4 σ earlier from peak (arbitrary)

Timing Offset Calibration Results

- $\bullet~$ Calibration is done to $\sim~ns$ level
- Offsets may be different for different triggers
 - Minimized in hardware to \sim 10 ns level, fully corrected in software

Drift Time-to-Distance

- Drift time-to-distance conversion follows form:
- Theta dependence:

$$v_{2}t < 0 \quad : d = v_{2}t$$
$$0 < v_{2}t < a_{1} \quad : d = v_{1}t = v_{2}t\left(1 + \frac{a_{2}}{a_{1}}\right)$$
$$a_{1} < v_{2}t \quad : d = v_{2}t + a_{2}$$

• a_1 and a_2 carry $\tan \theta = \frac{\Delta z}{\Delta r}$ dependence (r = u or v)

$$a_{1} = \sum_{i=0}^{3} a_{1,i} \tan^{i} \theta$$
$$a_{2} = \sum_{i=0}^{3} a_{2,i} \tan^{i} \theta$$

TTD Calibration

- No serious differences between high and low rate data
- Restricting to slice in incident angle θ:

Low Rate, 0.4 MHz

High Rate, 4.6 MHz

Small recalibrations for θ dependence are necessary

Tracking Algorithm - Clustering

- Algorithm scans for 'V' shaped clusters in time
- Hits in each cluster must be within reasonable time constraints
- Allow for gaps of 1 wire, must have $3 \le$ wires in cluster ≤ 7
- Time of the cluster is offset, calculated through fit based on time-to-drift distance mapping
 - Time resolution from fit on $\sigma_t \approx 15 \text{ ns}$

Advanced Scanning

- Multihit TDC information used since rates are high
- Earliest hits used to fit clusters
- Several passes over data taken to maximize clusters found when separated in time, but not space

Tracking Algorithm - UV Association

- Cut on U cluster V cluster time difference, \pm 40 ns
- Cluster positions must be in chamber active area

• If ambiguity in UV association, end tracking

- All chamber 1 chamber 2 UV clusters built
- Sort by χ² based on angular information from drift time fit
- Accept as many χ² clusters until maximum found

Tracking Efficiency

• Tracking efficiency found in left arm for:

- Left arm s2m scintillator trigger
- High preshower+shower calorimeter signal (e⁻)

 Average wires in clusters become smaller at high rate due to efficiency

Tracking Efficiency

- Losses come from:
 - UV association ambiguity
 - No clusters found (bad timing structure, overlapping, hit inefficiency)

 Event distribution has small distortions due to non-uniform efficiency

Tracking Work To Do:

- UV ambiguity may be broken through use of other detectors, χ^2 fitting, geometry considerations, event distribution considerations
- Some clusters from "no cluster" events may be recovered through better cluster searching code
- Efficiency improvents to 75% (from 60%) with improved analysis as estimate

- HRS VDC provide high resolution, hit based tracking
- PAC condition met: VDCs were able to perform tracking at high rates with appropriate hardware modifications
- Tracking efficiency is about 60% at 5 MHz trigger, optimization of beam current must be performed

BACKUP SLIDES

TTD Calibration

- Requires some θ dependence re-fitting
- Discrepancies are in the tail on the level of 20 μm

Tracking Resolutions

• Track resolutions found through residuals of full χ^2 fit

- Second, broader Gaussian distribution appears for high rate data
- Average width of central peak goes from 320 μm to 360 μm between low and high rate data
- Corresponds to 100 μ m, 0.3 mrad detector resolution

Tracking Efficiency

• Tracking efficiency found in left arm for:

- Left arm s2m scintillator trigger
- High preshower+shower calorimeter signal (e⁻)

 Average wires in clusters become smaller at high rate due to efficiency