Small-*x* Evolution of Unintegrated Gluon Distributions

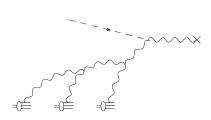
Fabio Dominguez

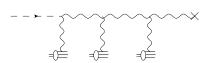
Columbia University

QCD Evolution Workshop April 8th, 2011.

Two Different Distributions

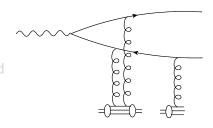
- Weizsäcker-Williams distribution
 - Explictly counts number of gluons in a physical gauge
- Fourier transform of dipole cross section
 - Widely used in k_t-factorized formulas for inclusive processes

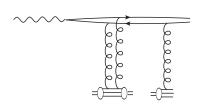

Dipole Distribution


- Inclusive gluon production
- Also appears in less inclusive measurements like $\gamma+$ Jet in pA collisions
- Evolution given by BK equation

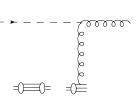
Weizsäcker-Williams Distribution

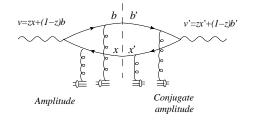
Can be calculated in specific models


- McLerran-Venugopalan
- Kovchegov-Mueller



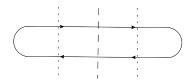
- No such colorless current available in the lab
- Consider two-jet events in DIS
- Make separation between quark and antiquark by taking correlation limit
- Singlet pair looks like a colorless object
- Octet pair looks like a gluon


- No such colorless current available in the lab
- Consider two-jet events in DIS
- Make separation between quark and antiquark by taking correlation limit
- Singlet pair looks like a colorless object
- Octet pair looks like a gluon

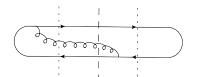

- No such colorless current available in the lab
- Consider two-jet events in DIS
- Make separation between quark and antiquark by taking correlation limit
- Singlet pair looks like a colorless object
- Octet pair looks like a gluon

- No such colorless current available in the lab
- Consider two-jet events in DIS
- Make separation between quark and antiquark by taking correlation limit
- Singlet pair looks like a colorless object
- Octet pair looks like a gluon

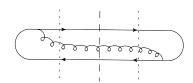
Dijet in DIS



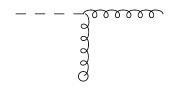
$$\frac{d\sigma^{\gamma_T^*A\to q\bar{q}X}}{d^3k_1d^3k_2} = N_c\alpha_{em}e_q^2\delta(p^+ - k_1^+ - k_2^+) \int \frac{d^2x}{(2\pi)^2} \frac{d^2x'}{(2\pi)^2} \frac{d^2b'}{(2\pi)^2} \frac{d^2b'}{(2\pi)^2} \\
\times e^{-ik_{1\perp}\cdot(x-x')}e^{-ik_{2\perp}\cdot(b-b')} \sum \psi_T^*(x-b)\psi_T(x'-b') \\
\times \left[1 + Q_{x_g}(x,b;b',x') - S_{x_g}^{(2)}(x,b) - S_{x_g}^{(2)}(b',x')\right]$$


Dijet in DIS

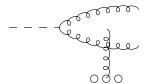
$$\begin{split} \frac{d\sigma^{\gamma_T^*A\to q\bar{q}+X}}{dy_1dy_2d^2P_\perp d^2q_\perp} &= \delta(x_{\gamma^*}-1)x_gG^{(1)}(x_g,q_\perp)H_{\gamma_T^*g\to q\bar{q}} \\ x_gG^{(1)}(x_g,q_\perp) &= -\frac{2}{\alpha_S}\int \frac{d^2v}{(2\pi)^2}\frac{d^2v'}{(2\pi)^2}\,e^{-iq_\perp\cdot(v-v')} \\ &\quad \times \left\langle \text{Tr}\left[\partial_i U(v)\right]U^\dagger(v')\left[\partial_i U(v')\right]U^\dagger(v)\right\rangle_{x_g} \end{split}$$


Quadrupole Evolution

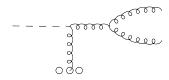
Soft gluon can create a new dipole

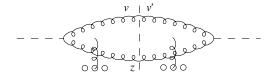


 Soft gluon can split quadrupole into two dipoles



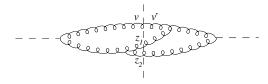
Weizsäcker-Williams Evolution


Effective vertex


Early emission

Late emission

Early Emissions Only


- Can be written in terms of dipole scattering only
- At the quadrupole level this corresponds to picking only the terms where the quadrupole splits into two dipoles

Late Emissions - First Step

- Virtual corrections have to be included too
- Complete cancelation at leading twist
- Lots of cancelations in different momentum regions. Not when softer gluon has a transverse momentum close to saturation scale

Quadrupole Comes Back

- For large N_c we get a quadrupole and two dipoles
- Large growth of the wavefunction
- Not clear it should give a small contribution

Conclusion

- Further insight into quadrupole evolution is needed
- Asymptotic limits seem to be dominated by dipole evolution