
Nuclear Structure and
Neutron-Rich Matter

Dick Furnstahl

Department of Physics
Ohio State University

August, 2008

Pictures have been freely borrowed from online sources;
I apologize in advance for any omitted citations. Also, inclusion
of particular calculations does not imply that they are the “best”.
No animals were harmed in creating this talk.



Nuclear Structure Discussion Questions
1 What is theoretical uncertainty of the 208Pb neutron skin radius?

2 What is the uncertainty of the neutron skin requested by theory to
inform the energy density functional (EDF) in a meaningful way?

3 What part of the above uncertainty comes from the bulk-matter
physics and what comes from finite-nuclei physics (e.g., shell
effects)?

4 What are additional experiments/calculations that can inform
question 3? In particular, are open-shell systems of any interest?

5 There are many correlations between various parameters defining
EDF and the neutron skin. What are the independent
correlations?

6 What are the complementary quality measurements that can
illuminate the question of the neutron skin?

7 Are short-range correlations of any relevance/importance to the
question of neutron skin of 208Pb?

8 Are data for light weakly bound nuclei of any relevance/use to the
question of the neutron skin of 208Pb?



Aspects of Nuclear Structure in Subsequent Talks

Basic properties of finite nuclei
Semi-empirical mass formula (SEMF) ingredients

Charge and matter distributions

Nuclear/neutron matter features and correlations
Density dependence of symmetry energy

Pairing

Many-body methods for nuclear structure
Microscopic “ab initio” approaches

Density functional theory (DFT) [cf. mean-field models]

Virial expansion, . . .

Inter-nucleon interactions =⇒ Input for structure
Boson-exchange (OBE) vs. chiral effective field theory (EFT)

Low-momentum potentials: renormalization group −→ “Vlow k ”

Three-body forces
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The Big Picture: From QCD to Nuclei

Lattice

QCD

QCD

Lagrangian

Exact methods A!12

GFMC, NCSM

Chiral EFT interactions

(low-energy theory of QCD)

Coupled Cluster, Shell Model

A<100

Low-mom.

interactions

Density Functional Theory A>100

Note the hierarchy of energy scales!
How do we take advantage?

Note the (collective) dof’s



What Does the Nuclear Potential Look Like?
Textbook answer (for 1S0) — cf. force between atoms:

Momentum units (~ = c = 1): typical relative momentum in
large nucleus ≈ 1 fm−1 ≈ 200 MeV [Elab ≈ 83 MeV–fm2k2

rel]



The QCD Phase Diagram [from Mark Alford]

Nuclei are self-bound “liquid drops” (and superfluid!)
Isospin axis is critical in our discussion!



Landscape of Finite Nuclei

Large extrapolations to neutron stars in density and proton fraction!



What Do (Ordinary) Nuclei Look Like?

Charge densities of magic
nuclei (mostly) shown

Proton density has to be
“unfolded” from ρcharge(r),
which comes from elastic
electron scattering

Roughly constant interior
density with
R ≈ (1.1–1.2 fm) · A1/3

Roughly constant surface
thickness

=⇒ Like a liquid drop!



What Do Nuclei Look Like? (figures from Witek)

Skyrme EDF densities
(Energy Density Functional)

When we have more
neutrons than protons,
where do the extras go?

Extreme possibilities:
rn = rp so ρn > ρp

=⇒ no (rn − rp) skin

ρn = ρp so rn > rp

=⇒ maximal skin

Reality is in between!
What determines the
balance?

What is it correlated with?



Neutron Skins By One Calculation (from Witek)

Skyrme HFB SLy4 (”Hartree-Fock Bogolyubov” =⇒ pairing)

Other EDF’s (SkX, FSUGold, . . . ) give different (?) results
Skyrme vs. RMF (relativistic mean field) EDF’s



Semi-Empirical Mass Formula (A = N + Z )

EB(N,Z ) = av A− asA2/3 − aC
Z 2

A1/3
− asym

(N − Z )2

A
+ ∆

Many predictions!

Rough numbers:
av ≈ 16 MeV, as ≈ 18 MeV,
aC ≈ 0.7 MeV, asym≈ 28 MeV

Pairing ∆ ≈ ±12/
√

A MeV
(even-even/odd-odd) or 0
[or 43/A3/4 MeV or . . . ]

Surface symmetry energy:
asurf sym(N − Z )2/A4/3

Much more sophisticated
mass formulas include
shell effects, etc.

Sometimes asym→ a4 (or αi )



Experimental Evidence for Pairing in Nuclei

EB(N,Z ) =

(15.6 MeV)

[
1− 1.5

(
N − Z

A

)2
]

A

− (17.2 MeV)A2/3 − (0.70 MeV)
Z 2

A1/3

+ (6 MeV)[(−1)N + (−1)Z ]/A1/2

Odd-even staggering of binding energies (Sn is plotted)

Energy gap in spectra of deformed nuclei

Low-lying 2+ states in even nuclei

Deformations and moments of inertia (theory requires
pairing)
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Semi-Empirical Mass Formula Per Nucleon
EB(N,Z )

A
= av − asA−1/3 − aC

Z 2

A4/3
− asym

(N − Z )2

A2

Divide terms by A = N + Z

Rough numbers:
av ≈ 16 MeV, as ≈ 18 MeV,
aC ≈ 0.7 MeV, asym≈ 28 MeV

Surface symmetry energy:
asurf sym(N − Z )2/A7/3

Now take A→∞ with
Coulomb→ 0 and fixed
N/A, Z/A

Surface terms negligible
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Nuclear and Neutron Matter Energy vs. Density
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Fermi momentum n = (ν/6π2)k3
F

Neutron matter (Z = 0) has
positive pressure
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Density Dependence of Symmetry Energy
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E(n, α) = E(n, α = 0) + S2(n)α2 + · · · α ≡ I = (N − Z )/A

Or proton fraction x = Z/A

Nuclear matter =⇒ x = 1/2; Neutron matter =⇒ x = 0
S2(n) is not pinned down by past fits to nuclei



Neutron Skin in 208Pb vs. Symmetry Energy
E(n, α) = E(n,0) + S2(n)α2 + S4(n)α4 + · · · α = I = (N − Z )/A
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Where Does the Symmetry Energy Come From?

Textbook discussion:

Take α ≡ (N − Z )/A small

Kinetic energy difference.
Use kn,p

F = kF(1± α)1/3

and expand: 〈Tsym/A〉 = 1
3

~2k2
F

2M α2

Average one-body potential U(k)
is most attractive for k = 0
=⇒ 1

6kF
(

∂U
∂k

)
kF
α2

More attraction for T = 0 n-p
(singlet) than T = 1 n-p, p-p, n-n
(triplet) and more n-p pairs when
N = Z =⇒ 1

4ρ(Ṽ1 − Ṽ0)α
2

All cost energy like α2



Symmetry Energy Restoring Force in Nuclei

Giant dipole resonance: bulk neutrons against protons

Pygmy resonances: skin against symmetric N = Z core

See Witek’s talk for assessment of correlations



What About at Very Low Densities?

We can use scattering data directly!
If we want model independence, what could be better than
using only data?

EOS for a dilute gas based on virial expansion to 2nd order
does this!

Controlled expansion in small parameter (fugacity eµ/T ) with
well-defined range of validity

For neutron matter, applies for n ≤ 4 · 1011(T/MeV)3/2 g/cm3

Virial EOS provides benchmark for all nuclear EOS’s at low
density and temperature

See A. Schwenk’s talk for details (and assumptions)



At Low Energies: Effective Range Expansion

Total cross section: σtotal =
4π
k2

∞∑
l=0

(2l + 1) sin2 δl(k)

What happens at low energy (λ = 2π/k � 1/R)?

k cot δ0(k)
k→0−→ − 1

a0
+

1
2

r0k2 + . . .

a0 (or as) = “scattering length” and r0 = “effective range”
While r0 ∼ R, the range of the potential, a0 can be anything

if a0 ∼ R, it is called “natural”
|a0| � R (unnatural) is particularly interesting

=⇒ cold atoms and neutrons



Near-Zero-Energy Bound States

Bound-state or near-bound state at zero energy
=⇒ large scattering lengths (a0 → ±∞)

For kR → 0, the total cross section is

σtotal = σl=0 =
4πa2

0

1 + (ka0)2 =

{
4πa2

0 for ka0 � 1
4π
k2 for ka0 � 1 (unitarity limit)



GFMC Results for Unitary Gas [J. Carlson et al.]

Extrapolate to large numbers of fermions

10 20 30 40
N

0

10

20

E
/E

FG

E = 0.44 N EFG

Pairing gap (∆) = 0.9 EFG

odd N

even N

Energy per particle: E/N = 0.44(1)EFG for a0 →∞ and r0 → 0

See Joe’s talk for latest neutron matter (finite a0, r0)



When Does Cooper Pairing Occur?

If there is an attractive interaction at the Fermi surface,
back-to-back fermions condense as Cooper pairs

The excitation spectrum (energy vs. momentum relation)
develops a gap ∆

For very dilute fermions, ∆ ∝ e−π/2kF|a0|



Outline

“Just the Facts” About Nuclei

Symmetric and Asymmetric Nuclear Matter

Many-Body Methods

Inter-Nucleon Interactions

Final Thoughts and Prejudices



Given an Interaction, Why Not Just Solve?

Lattice

QCD

QCD

Lagrangian

Exact methods A!12

GFMC, NCSM

Chiral EFT interactions

(low-energy theory of QCD)

Coupled Cluster, Shell Model

A<100

Low-mom.

interactions

Density Functional Theory A>100



Reach of Microscopic Approaches (from T. Papenbrock)



Paths to a Nuclear Energy Functional (EDF)
Empirical energy functional (Skyrme or RMF)
Emulate Coulomb DFT: LDA based on precision calculation
of uniform system E [ρ] =

∫
dr E(ρ(r)) plus constrained

gradient corrections (∇ρ factors)

SLDA (Bulgac et al.)

Fayans and collaborators
(e.g., nucl-th/0009034)

Ev = 2
3εFρ0

[
av

+
1−hv

1+x1/3
+

1−hv
2+x1/3

+

x2
+

+ av
−

1−hv
1−x1/3

+

1−hv
2−x1/3

+

x2
−

]
where x± = (ρn ± ρp)/2ρ0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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RG approach (J. Braun, from Polonyi and Schwenk, nucl-th/0403011)

EDF from perturbative chiral interactions + DME (Kaiser et al.)

Constructive Kohn-Sham DFT with RG-softened VχEFT’s



Hartree-Fock Wave Function
Best single Slater determinant in variational sense

|ΨHF〉 = det{φi(x), i = 1 · · ·A} , x = (r, σ, τ)

Hartree-Fock energy:

+ =⇒

〈ΨHF|Ĥ|ΨHF〉 =
A∑

i=1

~2

2M

∫
dx ∇φ∗i · ∇φi+

1
2

A∑
i,j=1

∫
dx

∫
dy |φi(x)|2v(x, y)|φj(y)|2

−1
2

A∑
i,j=1

∫
dx

∫
dy φ∗i (x)φi(y)v(x, y)φ∗j (y)φj(x) +

A∑
i=1

∫
dy vext(y)|φj(y)|2

Determine the φi by varying with fixed normalization:

δ

δφ∗i (x)

(
〈ΨHF|Ĥ|ΨHF〉 −

A∑
j=1

εj

∫
dy |φj(y)|2

)
= 0



Hartree-Fock Wave Function

Best single Slater determinant in variational sense

|ΨHF〉 = det{φi(x), i = 1 · · ·A} , x = (r, σ, τ)

The φi(x) satisfy non-local Schrödinger equations:

−∇2

2M
φi(x) +

(
VH(x) + vext(x)

)
φi(x) +

∫
dy VE(x, y)φi(y) = εiφi(x)

with VH(x) =

∫
dy

A∑
j=1

|φj(y)|2v(x, y) , VE(x, y) = −v(x, y)
A∑

j=1

φj(x)φ∗j (y)

+ =⇒

Solve self-consistently; non-local unless zero range

Skyrme HF or RMF have local potentials =⇒ look like DFT



Skyrme Hartree-Fock Energy Functionals

Skyrme energy density functional (for N = Z ):

E [ρ, τ , J] =
1

2M
τ +

3
8

t0ρ2 +
1

16
t3ρ2+α +

1
16

(3t1 + 5t2)ρτ

+
1

64
(9t1 − 5t2)(∇ρ)2 − 3

4
W0ρ∇ · J +

1
32

(t1 − t2)J2

where ρ(x) =
∑

i |φi(x)|2 and τ(x) =
∑

i |∇φi(x)|2 (and J)

Minimize E =
∫

dx E [ρ, τ, J] by varying the (normalized) φi ’s(
−∇ 1

2M∗(x)
∇+ U(x) +

3
4

W0∇ρ ·
1
i
∇× σ

)
φi(x) = εi φi(x) ,

U = 3
4 t0ρ+( 3

16 t1 + 5
16 t2)τ + · · · and 1

2M∗(x) = 1
2M +( 3

16 t1 + 5
16 t2)ρ

Iterate until φi ’s and εi ’s are self-consistent

In practice: other densities, pairing is very important (HFB),
projection needed, . . . =⇒ see Witek’s talk for modern status



Density Functional Theory (DFT)

Hohenberg-Kohn: There exists
an energy functional Evext[ρ] . . .

Evext[ρ] = FHK [ρ] +

∫
d3x vext(x)ρ(x)

FHK is universal (same for any
external vext) =⇒ H2 to DNA!

Introduce orbitals and minimize
energy functional =⇒ Egs, ρgs

Useful if you can approximate
the energy functional

Construct microscopically
or fit a “general” form



Microscopic Nuclear Structure Methods
Wave function methods (GFMC/AFMC, NCSM/FCI, CC, . . . )

many-body wave functions (in approximate form!)
Ψ(x1, · · · , xA) =⇒ everything (if operators known)
limited to A < 100? or < 200? or ???

Green’s functions (see W. Dickhoff and D. Van Neck text)

response of ground state to removing/adding particles
single-particle Green’s function =⇒ expectation value

of one-body operators, Hamiltonian
energy, densities, single-particle excitations, . . .

DFT (see C. Fiolhais et al., A Primer in Density Functional Theory)

response of energy to perturbations of the density J(x)ψ†ψ

natural framework is effective actions for composite operators
Γ[ρ] = Γ0[ρ] + Γint[ρ] (e.g., for EFT/DFT) but also consider
quantum chemistry MBPT+ approach (Bartlett et al.)
energy functional =⇒ plug in candidate density, get out

trial energy, minimize (variational?)
energy and densities (TDFT =⇒ excitations)



Two-Neutron Separation Energies



Quadrupole Deformations and B(E2)



Fission: Energy Surface from DFT



Problems with Extrapolations

Mass formulas and energy functionals do well where there
is data, but elsewhere . . .
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Figure 6: Predicted two-neutron separation energies for the even-even Sn isotopes using several 
microscopic models based on effective nucleon-nucleon interactions and obtained with phenomenological 
mass formulas (shown in the inset).  While calculations agree well in the region where experimental data 
are available, they diverge for neutron-rich isotopes with N>82.  It is seen that the position of the neutron 
drip line is uncertain.  Unknown nuclear deformations or as yet uncharacterized phenomena, such as the 
presence of neutron halos or neutron skins, make theoretical predictions highly uncertain.  Experiments for 
the Sn isotopes with N=80–100 will greatly narrow the choice of viable models.   



HFB Mass Formula: ∆m ∼ 1–2 MeV

Current empirical functionals hit wall at ∼ 1 MeV (!)

(cf., expected accuracy of an ab initio functional fit to
few-body data)



Issues with Empirical EDF’s

Density dependencies might be too simplistic

Isovector components not well constrained

No (fully) systematic organization of terms in the EDF

Difficult to estimate theoretical uncertainties

What’s the connection to many-body forces?

Pairing part of the EDF not treated on same footing

and so on . . .

=⇒ Turn to microscopic many-body theory for guidance
(UNEDF project!)



“Old” View of Relativistic Mean-Field Models

QHD Lagrangian with one-boson-exchange meson fields
Covariant Walecka model + φ3 and φ4 terms to get K0

+ gs + gv + gρ + gs
κ

+ gs
λ

Mean meson fields 〈φ〉 = φ0, 〈Vµ〉 = δµ0V0

Parameters: gs,gv ≈ 10, κ ≈ 5000 MeV, λ ≈ −200

Unexplained features:

justification of mean-field, “no-sea” approximation

how to deal with large couplings and loop corrections

truncation at φ4; why not V 4
0 ?

minimal isovector physics (chiral symmetry?)

Reinterpret as natural covariant density functional



New Terms for Covariant Energy Functionals

Mueller/Serot =⇒ isoscalar (V0) and isovector (b0) vector

add ζ
4!

g4
v V 4

0 +
ξ
4!

g4
ρb4

0

explore natural size ζ and ξ impact on EOS =⇒ MSn EOS’s

Horowitz/Piekarewicz et al. =⇒ FSUGold

add ζ
4!

gv V 4
0 + g2

ρb2
0[Λ4g2

sφ
2 + Λv g2

v V 2
0 ]

knobs for symmetry energy and high-density EOS

See also Ring et al., DDRMF (density dependent) and
G-matrix based covariant EDF’s

Similar questions
Is the energy functional general enough? (E.g., are
nonanalytic or nonlocal terms needed?)

Can we derive/constrain the functional more microscopically?

How can we better constrain parameters?
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Principle of Any Effective Low-Energy Description

If system is probed at low energies, fine details not resolved

use low-energy variables for low-energy processes

short-distance structure can be replaced by something
simpler without distorting low-energy observables

Could be a model or systematic (e.g., effective field theory)
physics intepretation can change with resolution!

Low density⇔ low interaction energy⇔ low resolution
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Nucleon-Nucleon Interaction (from T. Papenbrock)



Nucleon-Nucleon Interaction

Potential for nonrelativistic many-body Schrödinger equation

Depends on spins and isospins of nucleons; non-central
longest-range part is one-pion-exchange potential

Vπ(r) ∝ (τ1·τ2)

[
(3σ1 · r̂ σ2 · r̂ − σ1 · σ2)(1 +

3
mπr

+
3

(mπr)2 ) + σ1 · σ2

]
e−mπr

r

Characterize operator structure of shorter-range potential
central, spin-spin, non-central tensor and spin-orbit

{1,σ1 · σ2,S12,L · S,L2,L2σ1 · σ2, (L · S)2} ⊗ {1, τ1 · τ2}

Argonne v18 is VEM + Vπ + Vshort range(all cut off at small r )

Fit to NN scattering data up to 350 MeV (or krel ≤ 2.05 fm−1)

Alternative characterization is one-boson-exchange

Systematic treatment: chiral effective field theory (EFT)



Green’s Function Monte Carlo for Light Nuclei

Note the essential role of 3-body forces!



One-Boson-Exchange Model Scorecard (Machleidt)

T = 0 T = 1 Central Spin-Spin Tensor Spin-Orbit
coupling [1] [τ1 · τ2] [1] [σ1 · σ2] [S12] [L · S]

pseudoscalar η π — weak strong —
scalar σ δ strong — — adds to

attractive vector
vector ω ρ strong weak opposes ps strong

repulsive adds to s
tensor ω ρ — weak opposes ps —



Effective Field Theory Ingredients

See, e.g., “Crossing the Border” [nucl-th/0008064]

1 Use most general L with low-energy dof’s consistent with
the global and local symmetries of the underlying theory

Left = Lππ + LπN + LNN

chiral symmetry =⇒ systematic long-distance pion physics

2 Declaration of regularization and renormalization scheme

momentum cutoff and “Weinberg counting” (still open!)
=⇒ define irreducible potential and sum with LS eqn

use cutoff sensitivity as measure of uncertainties

3 Well-defined power counting =⇒ expansion parameters

use the separation of scales =⇒ {p,mπ}
Λχ

with Λχ ∼ 1 GeV

chiral symmetry =⇒ VNN =
∑∞

ν=νmin
cνQν with ν ≥ 0

(ν = 4− A + 2(L− C) +
∑

i Vi(di + fi/2− 2))

naturalness: LEC’s are O(1) in appropriate units
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Chiral Effective Field Theory for Two Nucleons

Epelbaum, Meißner, et al.

Also Entem, Machleidt

LπN + match at low energy
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State of the Art: N 3LO (Epelbaum, nucl-th/0509032)
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Few-Body Chiral Forces

At what orders? ν = −4 +

2N + 2L +
∑

i(di + ni/2− 2),
so adding a nucleon
(N++) suppresses by
Q2/Λ2.

Power counting confirms
2N � 3N > 4N

N2LO diagrams cancel

3NF vertices may appear
in NN and other
processes

Fits to the ci ’s have
sizable error bars

2N forces 3N forces 4N forces

��� ������ �
	

���� ������ ��	
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Sample Results with N 2LO 3NF
(Epelbaum, nucl-th/0509032)

nd scattering at 3, 10,
65 MeV

D and E fixed from
triton BE and nd
doublet scattering
length

These are predictions!

NLO vs. N2LO

See review for more!
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Observations on Three-Body Forces

Three-body forces arise from
eliminating dof’s

excited states of nucleon

relativistic effects

high-momentum
intermediate states

Omitting 3-body forces leads
to model dependence

but different for each
Hamiltonian

3-body contributions
increase with density

uncertain extrapolation if not
constrained
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Atomic 3-Body Forces: Axilrod-Teller Term (1943)

Three-body potential for atoms/molecules from triple-dipole
mutual polarization (3rd-order perturbation correction)

V (i , j , k) =
ν(1 + 3 cos θi cos θj cos θk )

(rij rik rjk )3

Usually negligible in metals and semiconductors

Can be important for ground-state energy of solids bound by
van der Waals potentials

Bell and Zuker (1976): 10% of energy in solid xenon



Chiral EFT: Resonance Saturation

[Epelbaum et al. (2002)]

How is chiral EFT potential related to phenomenological NN
potentials based on one-boson exchange?

Boson exchange =⇒ model of short-distance physics
=⇒ unresolved in chiral EFT (except for pion)
=⇒ encoded in coefficients of contact terms
ρ, ω, σ, . . . −→ + ∇2 + · · ·

g2

q2 + m2

g2

m2
− g2

m2



q2

m2




treat multiple pion exchanges systematically

breakdown when q ≈ m (how high in density?)



Chiral EFT: Resonance Saturation (cont.)

Compare coefficients from phenomenological models to
low-energy constants of chiral EFT:
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Chiral EFT: Resonance Saturation (cont.)

Compare coefficients from phenomenological models to
low-energy constants of chiral EFT:
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Naturalness of Coefficients (Epelbaum et al.)

Georgi-Manohar naive dimensional analysis (NDA):

Lχ eft = clmn

(
N†(· · · )N

f 2
πΛχ

)l (
π

fπ

)m (
∂µ,mπ

Λχ

)n

f 2
πΛ2

χ

fπ ∼ 100 MeV and Λχ ∼ 1000 MeV

check NLO, NNLO constants from LNN (vary cutoff from
500. . .600 MeV):

f 2
π CS −1.079 . . .− 0.953 f 2

π CT 0.002 . . .0.040
f 2
π Λ2

χ C1 3.143 . . .2.665 4 f 2
π Λ2

χ C2 2.029 . . .2.251

f 2
π Λ2

χ C3 0.403 . . .0.281 4 f 2
π Λ2

χ C4 −0.364 . . .− 0.428

2 f 2
π Λ2

χ C5 2.846 . . .3.410 f 2
π Λ2

χ C6 −0.728 . . .− 0.668

4 f 2
π Λ2

χ C7 −1.929 . . .− 1.681

1/3 . clmn . 3 =⇒ natural! =⇒ truncation error estimates

f 2
π CT unnaturally small =⇒ SU(4) spin-isospin symmetry



Power Counting in Skyrme and RMF Functionals?

NDA analysis:
[Friar et al., rjf et al.]

c
[
ψ†ψ

f 2
πΛ

]l [∇
Λ

]n

f 2
πΛ2

=⇒
ρ←→ ψ†ψ
τ ←→ ∇ψ† · ∇ψ
J ←→ ψ†∇ψ

Density expansion?

1
7
≤ ρ0

f 2
πΛ
≤ 1

4

for 1000 ≥ Λ ≥ 500
2 3 4 5

power of density
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)

ε0

natural (Λ=600 MeV)
Skyrme ρn

RMFT-II ρn net
RMFT-I ρn net

kF = 1.35 fm−1



Naive Dimensional Analysis for RMF

Mass scales in low-energy QCD: [Georgi & Manohar, 1984]

fπ ≈ 93 MeV , Λ ≈ 500 to 800 MeV

NDA rules for a generic term in energy functional:

c [f 2
πΛ2]

[(
NN
f 2
πΛ

)` 1
m!

(
gφ
Λ

)m 1
n!

(
gV0

Λ

)n(∇
Λ

)p ]

“Naturalness” =⇒ dimensionless c is of order unity

ratio Λ/fπ → g ≈ 5–10 is origin of strong couplings
=⇒ gs,gv ∼ g κ ∼ gΛ λ ∼ g2

Provides expansion parameters at finite density:

gsφ

Λ
≈ gv V0

Λ
≈ 1/2 ,

ρs

f 2
πΛ
≈ ρB

f 2
πΛ
≈ 1/5 at ρ0

B



RMF Estimates in Finite Nuclei

ρ̃s, ρ̃B →
〈ρB〉
f 2
π Λ

∇̃ρB →
〈∇ρB〉
f 2
π Λ2 s̃ → 〈s̃〉

f 2
π Λ

ρ̃3 → Z − N
2A

〈ρB〉
f 2
π Λ

≈ 1 isovector parameter constrained by energy fit



Sources of Nonperturbative Physics for NN

1 Strong short-range repulsion
(“hard core” or singular V2π)

2 Iterated tensor (S12) interaction

3 Near zero-energy bound states

Consequences:
In Coulomb DFT, Hartree-Fock gives dominate contribution

=⇒ correlations are small corrections =⇒ DFT works!

cf. NN interactions =⇒ correlations� HF =⇒ DFT fails??

However . . .
the first two depend on the resolution =⇒ changed by RG

all three are affected by Pauli blocking



S-Wave (L = 0) NN Potential in Momentum Space

Fourier transform in partial waves (Bessel transform)

VL=0(k , k ′) =

∫
d3r j0(kr) V (r) j0(k ′r) = 〈k |VL=0|k ′〉

Repulsive core =⇒ big high-k (> 2 fm−1) components



S-Wave (L = 0) NN Potential in Momentum Space

Fourier transform in partial waves (Bessel transform)

VL=0(k , k ′) =

∫
d3r j0(kr) V (r) j0(k ′r) = 〈k |VL=0|k ′〉

Repulsive core =⇒ big high-k (> 2 fm−1) components



Low-Momentum Interactions from RG [AV18 3S1]

“Vlow k ” =⇒ Lower a cutoff Λ in relative k , k ′ [sharp]

SRG =⇒ Drive the Hamiltonian toward diagonal [λ ≡ 1/s1/4]

Other transformations also decouple (e.g., UCOM)

Isn’t chiral EFT already soft? Or why not use a lower cutoff?
[e.g., E/G/M: 450 MeV, E/M: N3LOW (400 MeV)]



Repulsive Core Before and After
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Probability at short separations suppressed =⇒ “correlations”

Greatly complicates expansion of many-body wave functions

Short-distance structure⇔ high-momentum components



Repulsive Core Before and After
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Transformed potential =⇒ no short-range correlations in wf

Potential is now non-local: V (r)ψ(r) −→
∫

d3r′ V (r, r′)ψ(r′)
Also few-body forces. Problems for many-body methods?

=⇒ For some yes, for others no!



What are the measurable quantities?

True observables do not change under field redefinitions or
unitary transformations in low-energy effective theories

Examples: cross sections, conserved quantities like charge

Many useful quantities are extracted from measurements
via a convolution (e.g., using some type of factorization)

But these will vary with the convention used

E.g., parton distributions

Conventions are renormalization prescriptions, cutoffs, . . .
Different potentials reflect different conventions

Unitary transformation (U†U = 1) of H and other operators
=⇒ choose U to decouple!

En = 〈Ψn|H|Ψn〉 = (〈Ψn|U†)UHU†(U|Ψn〉)
= 〈Ψ̃n|H̃|Ψ̃n〉

The convention for the long-range part of NN· · ·N potentials is
agreed to be (local) pion exchange, but differs widely for the
short-range part. (Note: Vlow k preserves long-distance part.)



Quantities that vary with convention
=⇒ not observables

deuteron D-state probability
[Friar, PRC 20 (1979)]

off-shell effects
[Fearing/Scherer]

occupation numbers
[Hammer/Furnstahl]

wound integrals

short-range part of wave
functions

short-range potentials; e.g.,
contribution of short-range
3-body forces
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Vlow k from av18 using e−(p2/Λ2)8



Short-Term Roadmap for Microscopic Nuclear DFT

Use a chiral EFT to a given order (e.g., E/M N3LO below)

Soften with RG (evolve to Λ ≈ 2 fm−1 for ordinary nuclei)
NN interactions fully, NNN interactions (3NF) approximately

Generate density functional using DME in k -space
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Outline

“Just the Facts” About Nuclei

Symmetric and Asymmetric Nuclear Matter

Many-Body Methods

Inter-Nucleon Interactions

Final Thoughts and Prejudices



Universal Nuclear Energy Density Functional



SciDAC 2 Project: Building a Universal Nuclear
Energy Density Functional

Collaboration of physicists, applied mathematicians,
and computer scientists

Funding in US but international collaborators also



Goals of SciDAC 2 Project: Building a Universal
Nuclear Energy Density Functional

Understand nuclear properties “for element formation, for
properties of stars, and for present and future energy and
defense applications”

Scope is all nuclei (there are more than 5000!),
with particular interest in reliable calculations of unstable
nuclei and in reactions

=⇒ Density functional theory (DFT) is method of choice

Order of magnitude improvement over present capabilities
=⇒ precision calculations of masses, . . .

Connected to the best microscopic physics

Maximum predictive power with well-quantified uncertainties

[See http://www.scidacreview.org/0704/html/unedf.html
by Bertsch, Dean, and Nazarewicz]



Major UNEDF Research Areas

Ab initio structure — Nuclear wf’s from microscopic NN· · ·N
NCSM/NCFC, CC, GFMC/AFMC

AV18/ILx, chiral EFT −→ Vlow k

Ab initio energy functionals — DFT from microscopic N· · ·N
Cold atoms — superfluid LDA+ as prototype for nuclear DFT

χEFT −→ Vlow k −→ MBPT −→ DME

DFT applications — Technology to calculate observables
Skyrme HFB+ for all nuclei (solvers)

Fitting the functional to data (e.g., correlation analysis)

DFT extensions — Long-range correlations, excited states
LACM, GCM, TDDFT, QRPA, CI

Reactions – Low-energy reactions, fission, . . .



(Nuclear) Many-Body Physics: “Old” vs. “New”

One Hamiltonian for all
problems and energy/length
scales

Infinite # of low-energy
potentials; different
resolutions =⇒ different dof’s
and Hamiltonians

Find the “best” potential There is no best potential
=⇒ use a convenient one!

Two-body data may be
sufficient; many-body forces
as last resort

Many-body data needed and
many-body forces inevitable

Avoid (hide) divergences
(e.g., with form factors)

Exploit divergences (cutoff
dependence as diagnostic)

Choose diagrams by “art” Power counting determines
diagrams and truncation error

Test models only by
comparison to experiment

Theory itself predicts limits,
errors, improvements



Plan: Use DOF’s to Simplify and Make Efficient

Weinberg’s Third Law of Progress in Theoretical Physics:
“You may use any degrees of freedom you like to describe a
physical system, but if you use the wrong ones, you’ll be
sorry!”

There’s an old vaudeville joke about a doctor and patient . . .

Patient: Doctor, doctor, it hurts when I do this!
Doctor: Then don’t do that.
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