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 Neutron Matter
 EOS
 1- and 2-body distribution functions

 Spin Response
  Pairing Gap 

 Density Response (Drops)
 Energies and Saturation
 Comparing ab-initio energies with Skyrme
 Single-Particle Energies

 Outlook

How can microscopic theories constrain mean-field theories 
and properties of neutron-rich matter?



Computational Approach:

       | ψ0 > = exp [ - H τ ] | ψt >
GFMC:   sum over spin/isospin explicitly
Diffusion MC:     spin-independent (s-wave interactions)
AFDMC:  Monte-Carlo sums over spin/isospin

Mostly calculations on light nuclei

Nuclear Structure High-Momentum Pairs



Neutron Matter Diffusion Monte Carlo
~65 particles (scales like N3)
Gap from even/odd staggering
Need << 1 MeV accuracy

Each calculation (fixed ρ,N, k) takes of order 1/2 day on 1000 processors
                   approximately 1 Tflop on Franklin
                   90% parallel efficiency up to 1000 processors
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Hamiltonian - GFMC - Wavefunction
Hamiltonian
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1S0 channel of Argonne v18 (a = −18.5fm, rnn = 2.7fm)

Green’s Function Monte Carlo

Ψ(τ →∞) = lim
τ→∞

e−(H−ET )τΨV

Variational wavefunction

ΨV (R) =
∏

i,j ′
f (rij ′)ΦBCS(R)

Alex Gezerlis Quantum Monte Carlo and Neutron Star Matter Superfluidity
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Neutron Matter EOS

Equation of State at Low Densities

Neutron Matter properties less well-known than Nuclear Matter near equilibrium density
Ab Initio calculations can provide guidance to the density functional

Gezerlis & Carlson, PRC 2008

From JILA
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Lattice Results at Unitarity

Good agreement between lattice, continuum

lattice has no fixed-node error
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Low Density Neutron Matter
EOS very well determined

Skyrmes typically fit at kf = 0 and ~ 1.3 fm-1,
but not between



Dean Lee, arXiv:0804.350
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Other Quantities:
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Spin Degrees of Freedom

Superfluid pairing gap 
in strong coupling testable in cold atoms

Unpolarized Superfluid

Polarized Normal State

Magnetic Fields or different
chemical potentials can break superfluidity

Thermally populated
quasiparticles in superfluid

Figures from Shin, et al,  Nature 459, 689-U1, 2008



Universal Parameters

χ = 0.40 (02) Superfluid Energy / 
Fermi Gas Energy

Δ = 0.50 (03)    Gap / Fermi Energy

β = 0.60 (01)     Binding Energy of
                                   one spin down in 

           Fermi sea of  spin up

Superfluid State (P=0)

Normal State (P=1)
Carlson, et al, PRL 2003,
Giorgini, et al., PRL 2004,
Carlson and Reddy, PRL 2005, ...

Lobo, et al, PRL, 2006



Cold Atom Dispersion

Carlson and Reddy 2005, ...
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shown. In this region, we may use mean field theory to
calculate the self energy of a spin-up Fermion in the BEC
phase. This is given by ∆BEC = 4πaBFnB/m̃, where
aBF ! 1.2a is the Fermion-Boson scattering length [22],
nB is the Boson density and m̃ is the reduced mass of
the Fermion-Boson system. The Boson-Boson scattering
length is also known and is given by aBB ! 0.6a [22].
We use this to calculate the pressure of the BEC at lead-

ing order in the n1/3
B aBB expansion [21]. Pressure and

chemical equilibrium then uniquely determine the chem-
ical potential of spin-up Fermions in the Fermi gas phase.
In agreement with earlier work by Viverit, Pethick and
Smith [23] we find that the homogeneous BEC phase
easily accommodates a finite polarization in the dilute
regime - as evidenced by δµ/∆BEC " 1.
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FIG. 2: The quasi-particle spectrum above the superfluid
phase at kFa = ∞. For reference, the quasi-particle spec-
trum in BCS theory for kFa = ∞ is also shown.

Quasiparticle Dispersion and Polarized Superfluid
State: In addition to calculating the paired ground-state
energy and the superfluid gap, we have performed QMC
calculations of the homogeneous superfluid phase to ex-
amine the quasiparticle dispersion as a function of mo-
mentum. In addition, we have calculated the ground-
state energy of systems at finite polarization to exam-
ine the interaction between these quasi-particles and de-
termine if the gapless phase can support a macroscopic
polarization. The methods used are identical to those
employed earlier and the same (finite-range) cosh poten-
tial was used [6, 7]. As before, we expect the small but
finite-range of the potentail to have a small effect upon
the ground-state energy and the gap. Here we employ
somewhat larger system sizes, however, ranging from 54-
66 particles rather than the earlier studies from 12 to 20
particles. The larger system sizes allow for a somewhat
finer momentum grid which is useful for examining the
dispersion.

For the dispersion calculations, we place an unpaired

spin in a state of definite momenta k = (nx, ny, nz)2π/L,
where L is the (cubic) box length and the ni are integers
describing the momenta in each coordinate. The BCS
plus unpaired particle wave function can be calculated
efficiently as a determinant [6]. As for the unpolarized
system, we employ the fixed-node algorithm to avoid the
fermion sign problem. This yields an upper bound to the
energy for this system, the parameters in the BCS pair
function φ(rij) are (approximately) optimized to yield
the best fixed-node energy. We include Jastrow correla-
tions between anti-parallel and parallel spins in the trial
wave function to minimize the statistical errors [9]. These
do not affect the energy, however, as they do not change
the nodal surfaces where ΨT = 0.

The quasiparticle spectrum at kF a = ∞ is displayed
in Figure 2. The BCS prediction at kF a = ∞ is shown
for comparison. The QMC points are calculated by com-
puting Ek(N + 1) − [E0(N) + E0(N + 2)]/2 at constant
density, where Ek(N +1) is the energy of the state of mo-
mentum k with 1 unpaired and N paired particles. The
E0 are the ground states of the N and N + 2 particle
systems.

Note that the minimum is at a momentum significantly
less than the Fermi momentum. For larger coupling, the
minimum in the dispersion will continue to trend towards
lower momenta. This is apparent in the figure from the
two sets of QMC results. From the QMC calculations we
extract ξ = 0.42(1) and a gap of 0.84(4)EFG, or β = 1.2,
somewhat smaller than earlier results.

In order to understand if the BCS phase can support a
finite polarization, it is important to also study the inter-
action between the (polarized) quasi-particles. We have
used QMC techniques to search for the ground state en-
ergy as a function of polarization. The lowest variational
energy in each case is found by filling the states at the
minima of the quasiparticle spectra.

The results are shown in Fig. 3. These results demon-
strate that the quasi-particles at small polarization are
nearly non-interacting. This would be expected at small
polarizations since the pair size is expected to be of the
order of the inter-particle separation. The solid points
are the QMC calculations with finite polarization. The
integers next to these solid points indicate the momen-
tum shells n2, where k2 = n2(2π/L)2 = (n2

x + n2
y +

n2
z)(2π/L)2, filled in the trial wave function. Calculations

were performed for 66 particles at various polarizations.
The open symbols represent the sum of single-particle

energies obtained from the single-particle dispersion cal-
culations of Figure 2. At small polarizations this is nearly
degenerate with the full calculation. The solid line in
the figure is the energy of a phase separated unpolarized
paired phase and a fully polarized Fermi Gas.

The calculations indicate that the mixed and homo-
geneous phases are essentially degenerate at kF a = ∞.
Our calculations reproduce momentum distributions sim-
ilar to those proposed for the gapless SC state, the states

Shin, Ketterle, ... 2008



Pairing Gap for Atomic Gas
Experimentally confirmed to ~10%

Neutron Matter Pairing Gap
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FIG. 3: Polarization versus radius, theory and experiment, for
different values of δ and tc at T ′ = 0.03 and T ′ = 0.05. The
dashed curves show the local finite temperature gap. The
results indicate that the data provide both an upper and a
lower bound on the gap: 0.5 ≥ δ ≥ 0.4.

order transition somewhere in between. In contrast, the
comparison between theory and data at T ′ = 0.05 sug-
gests that the superfluid extends further out. Polariza-
tion in the superfluid state (dotted curve) extrapolated
to p ! 0.4 provides a better description of the data than
the normal state. A clear signature of a first-order tran-
sition is also absent. In both cases there appears to be
evidence for a mild decrease in the gap with increasing
T/EF and polarization.

For a fixed central density and R↑, our analysis pre-
dicts that the phase-boundary Rc moves outward in the
trap with increasing temperature. This behavior is sen-
sitive to the thermal properties of both phases at low
temperature. At small temperature and polarization, the
thermal response of the superfluid phase in the vicinity of
the transition is stronger than that of the normal phase
– driven entirely by the fact that spin-up quasiparticles
are easy to excite and have a large density of states.

The comparison in Fig. 3 provides compelling lower
and upper bounds for the superfluid gap. Even if the
temperature was extracted incorrectly from the exper-
iment, the extracted gap cannot be too small. A gap
smaller than ≈ 0.4EF would produce a shell of polarized
superfluid before the transition even at zero temperature.
Furthermore, the radial dependence of this polarization
would be quite different than observed experimentally,
rising abruptly from the point where ∆ = δµ and being
concave rather than convex. A gap larger than ≈ 0.5EF

would be unable to produce the observed polarization in
the superfluid phase. We have also examined the depen-
dence of our results on the universal parameters ξ and
χ. Both of these are expected to be uncertain by 0.02.
These uncertainties, as well as the uncertainties in the

superfluid quasiparticle dispersion relation do not signif-
icantly alter the extracted bounds on the superfluid gap.

In summary, we have extracted the pairing gap from
measurements of spin up and spin down densities in po-
larized Fermi gases in the unitary regime. These systems
have an extremely large gap of almost one-half the Fermi
energy – the value extracted in this work is clearly the
largest gap measured in any Fermi system. Future more
precise experiments extending over the BCS-BEC transi-
tion region would allow an experimental determination of
the evolution of the pairing gap from the weak-coupling
regime of traditional superfluids and superconductors to
the strongly-interacting regime. This could resolve long-
standing issues regarding, for example, the pairing gap
in neutron matter and the cooling of neutron stars.

We would like to thank M. Alford, A. Gezerlis and Y.
Shin for useful comments on the manuscript. The work of
S.R. and J.C. is supported by the Nuclear Physics Office
of the U.S. Department of Energy and by the LDRD
program at Los Alamos National Laboratory.
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Analysis of cold atom experiments
gives  Δ/Ef  = 0.45 (05).

Largest Δ/Ef in any system!
Carlson and Reddy, PRL 08

Calculations also agree;
new AFDMC calculation
much closer to DMC



Increasing T

RF response

Shin, Ketterle, ... 2008



Neutron Matter Pairing Gap
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New Calculations:
Dispersion of Single-Particle States

Can be a constraint to Mean Field models
Spin susceptibility - of interest in neutron stars

kf = 0.54 fm-1



Density Perturbations

Static Susceptibility:
       response to small long-wavelength potential

General response to external potentials

Relevant to generalized gradient 
terms in density functional:
     PREX
     Inner Crust of Neutron Stars



Neutron Drops
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Summary and Outlook

Simplest properties of neutron matter at T=0
    rapidly becoming well understood: E/A, Δ

Similar systems (cold atoms) tested in experiment

Will require more advanced density functionals
Many more properties will be available shortly:
                 Spin Susceptibility
                 Generalized Static Resonse, ...

Toward direct studies of neutron-star matter


