Measuring the Neutron Star Mass-Radius Relationship with X-ray Spectroscopy

Bob Rutledge McGill University

Collaborators: Lars Bildsten (ITP/UCSB) Ed Brown (MSU) George Pavlov (PSU) Slava Zavlin (MSFC) Greg Ushomirsky (Lincoln Lab.)

Summary

- Neutron Star Masses and Radii can be measured independently, simultaneously - from Hydrogen atmosphere neutron stars, to < few% accuracy, each.
- Signal to noise required is out of reach of existing X-ray observatories, but can be done with proposed missions (Constellation-X/International X-ray Observatory).

Some systems with masses measured to 1 part in 10⁶ However, not so useful for radius measurements.

Quiescent Low Mass X-ray Binaries

• When accreting (pictured) we mostly observe X-rays from the disk.

 In some sources ("transients") accretion can stop -and then we see only the neutron star.

System Names: LMXBs, Soft X-ray Transients, Neutron-Star Binaries.

Soft X-ray Transients

- Outbursts are due to disk instability; peak luminosities are 10³⁶-10³⁸ ergs s⁻¹.
- Outbursts last ~30 days (or as long as years).
- Exhibit type-I X-ray bursts (thermonuclear flashes).
- After outburst, X-ray sources return to quiescence (10³¹-10³³ ergs s⁻¹)

Why are qLMXBs promising for measuring NS radii?

Brown, Bildsten & RR (1998)

First detection: transient neutron star was discovered in quiescence (Cen X-4; $L_x \sim 10^{33}$ erg s⁻¹. Van Paradijs et al 1984), resulted in two problems :

 The neutron stars should be cold. Luminosity provided by accretion? (van Paradijs et al 1984)

Deep Crustal Heating (Haensel & Zdunik 1990, 2003)

Non-Equilibrium Processes in the Outer Crust								
	Beginning with ⁵⁶ Fe							
ρ	Reaction	Δρ⁄ρ	Q					
(g cm ⁻³⁾			(Mev/np)					
1.5.109	${}^{56}\text{Fe} \Rightarrow {}^{56}\text{Cr} - 2e - + 2\nu_e$	0.08	0.01					
1.1.1010	${}^{56}\text{Cr} \Rightarrow {}^{56}\text{Ti} - 2\text{e} - + 2\nu_{e}$	0.09	0.01					
7.8·10 ¹⁰	${}^{56}\text{Ti} \Rightarrow {}^{56}\text{Ca} - 2e - + 2\nu_e$	0.10	0.01					
2.5.1010	${}^{56}\text{Ca} \Rightarrow {}^{56}\text{Ar} - 2\text{e} - + 2\nu_{e}$	0.11	0.01					
6.1.1010	${}^{56}\text{Ar} \Rightarrow {}^{52}\text{S} + 4\text{n} - 2\text{e} - + 2\nu_{e}$	0.12	0.01					

Series of reactions deposit Q=1.45 MeV/np within the crust

	Non-Equilibrium Processes in the Inner Crust						
ρ	Reaction	X _n	Q				
(g cm ⁻³⁾			(Mev/np)				
9.1·10 ¹¹	${}^{52}S \Rightarrow {}^{46}Si + 6n - 2e - + 2v_e$	0.07	0.09				
1.1.1012	${}^{46}\text{Si} \Rightarrow {}^{40}\text{Mg} + 6\text{n} - 2\text{e} - + 2\nu_{e}$	0.07	0.09				
1.5.1012	${}^{40}\text{Mg} \Rightarrow {}^{34}\text{Ne} + 6\text{n} - 2\text{e} - + 2\nu_{e}$						
	34 Ne+ 34 Ne \Rightarrow 68 Ca	0.29	0.47				
1.8.1012	${}^{68}\text{Ca} \Rightarrow {}^{62}\text{Ar} + 6\text{n} - 2\text{e} - + 2\nu_{e}$	0.39	0.05				
$2.1 \cdot 10^{12}$	$^{62}\text{Ar} \Rightarrow ^{56}\text{S} + 6\text{n} - 2\text{e} - + 2\nu_{\text{e}}$	0.45	0.05				
2.6.1012	${}^{56}\text{S} \Rightarrow {}^{50}\text{Si} + 6\text{n} - 2\text{e} - + 2\nu_{e}$	0.50	0.06				
3.3.1012	${}^{50}\text{Si} \Rightarrow {}^{44}\text{Mg} + 6\text{n} - 2\text{e} - + 2\nu_{e}$	0.55	0.07				
4.4·10 ¹²	${}^{44}\text{Mg} \Rightarrow {}^{36}\text{Ne} + 6\text{n} - 2\text{e} - + 2\nu_{\text{e}}$						
	36 Ne+ 36 Ne \Rightarrow 72 Ca						
	${}^{68}\text{Ca} \Rightarrow {}^{62}\text{Ar} + 6\text{n} - 2\text{e} - + 2\nu_{e}$	0.61	0.28				
5.8·10 ¹²	$^{62}\text{Ar} \Rightarrow ^{60}\text{S} + 6\text{n} - 2\text{e} + 2\nu_{e}$	0.70	0.02				
7.0·10 ¹²	${}^{60}\text{S} \Longrightarrow {}^{54}\text{Si} + 6\text{n} - 2\text{e} - + 2\nu_{e}$	0.73	0.02				
9.0·10 ¹²	$^{54}\text{Si} \Rightarrow ^{48}\text{Mg} + 6\text{n} - 2\text{e} - + 2\nu_{e}$	0.76 1.45 N	0.03 [ev per np				
1.1·10 ¹³	$^{48}Mg + {}^{48}Mg \Rightarrow {}^{96}Cr$	0.79	0.11				

Deep Crustal Heating

Reactions in the crust provide ~1 MeV/np. Because the crust is in close thermal contact with the NS core, this will heat a cold core until a steady-state is reached (10⁴ yr; cf. Colpi 1999) in which the energy emitted between outbursts (the quiescent luminosity) is equal to the energy deposited in the crust during outbursts.

$$L_q \approx 6 \times 10^{33} \frac{\langle M \rangle}{10^{-10} M_{sun} \text{ yr}^{-1}} \frac{Q}{1 \text{ MeV}} \text{ erg s}^{-1}$$

Why are qNSs promising for measuring NS radii?

 Spectral fits using blackbody spectra produced too small of radii for a neutron star (<1 km vs. ~10-20 km, with kT_{eff}~100 eV).

Solution: qNSs are not blackbodies.

When the accretion rate onto the NS drops below a certain rate (~10³⁴ erg s⁻¹) metals settle out of the photosphere on a timescale of 10-100 sec (Bildsten et al 1992). This leaves a photosphere of pure Hydrogen. The dominant opacity of a ~100 eV H photosphere is free-free processes, which is strongly energy dependent.

$$\kappa_E^{ff} \approx 114 \left(\frac{kT}{50 \text{ eV}}\right)^{-3/2} \left(\frac{E}{1 \text{ keV}}\right)^{-3} \text{ cm}^2 \text{ g}^{-1}$$

Brown, Bildsten & RR (1998)

Emergent Spectra from Neutron Star Hydrogen Atmosphere

Chandra X-ray Observatory • Launched 1999 (NASA) • 1" resolution XMM/Newton
Launched 1999 (ESA
6" resolution
~4x area of Chandra.

Aql X-1 with Chandra -- Field Source

The LMXB Factories: Globular Clusters

- GCs : overproduce LMXBs by 1000x vs. field stars -- contain 10% of the known LMXBs vs. 0.01% of the stars in the galaxy.
- Accurate distances are important for a number of studies (Stellar evolution, WD cooling).

qNSs can be identified by their soft X-ray spectra, and confirmed with optical counterparts.

NGC	D (kpc)	+/-(%)			
104	5.13	4			
288	9.77	3			
362	10.0	3			
4590	11.22	3			
5904	8.28	3			
7099	9.46	2			
6025	7.73	2			
6341	8.79	3			
6752	4.61	2			
Carretta et al (2000)					

NGC 5139 (Omega Cen)

The optical counterpart has been identified! (second one)

NGC 5139 (Omega Cen)

CXOU 132619.7-472910.8: Chandra ACIS-I 10⁻⁶ keV cm⁻² s⁻¹ 10⁻⁶ 10-* ຍ 10.5 10.5 5 2 10 1 Energy (keV) N_H kT_{eff,∞} R_{∞} (d/5 kpc) (1e20 cm⁻²) 66_{-5}^{+4} eV $14.3 \pm 2.1 \text{ km}$ (9)**RR et al (2002)**

The Best Measured Neutron Star Radii

Name	\mathbf{R}_{∞}	D	kT _{eff,∞}	N _H	Ref.	
	(km/D)	(kpc)	(eV)	$(10^{20} \text{ cm}^{-2})$		
omega Cen (Chandra)	13.5 ± 2.1	5.36 ±6%	66 ⁺⁴ -5	(9)	Rutledge et al (2002)	Caveats:
omega Cen** (XMM)	13.6 ± 0.3	5.36 ±6%	67 ±2	9 ± 2.5	Gendre et al (2002)	• All IDd I spectrum
M13** (XMM)	12.6 ± 0.4	7.80 ±2%	76 ±3	(1.1)	Gendre et al (2002)	Ómega (have opt
47 Tuc X7 (Chandra)	34 ₋₁₃ +22	5.13 ±4%	84 ⁺¹³ ₋₁₂	0.13+0.060.04	Heinke et al (2006)	counterp
M28** (Chandra)	14.5 _{-3.8} +6.9	5.5 ±10%	90 ₋₁₀ +30	26 ± 4	Becker et al (2003)	• calibrat uncertair
NGC 7099 (Chandra)	16.9 _{-4.3} +5.4		94 ₋₁₂ +17	2.9 ^{+1.7} _{-1.2}	Lugger et al (2006)	
NGC 2808 (XMM)	??	9.6 (?)	103 ₋₃₃ +18	18 ⁺¹¹ -7	Webb et al (2007)	Distane Carretta et Thompson et

All IDd by X-ray pectrum (47 Tuc,)mega Cen now ave optical

ounterparts)

calibration ncertainties

Distances: Carretta et al (2000), Thompson et al (2001)

Obs	Observed		Observed with insufficient time			ot Observ	red
NGC	Rcore (")	D (kpc)	log NH	Obs. Time	qNS detect	qNSs?	
104	22.5	4.6	20.3	74 I/ 299 S	33	2	
5904	24.2	7.6	20.2	45	87		
3201	86.3	5.0	21.1	(XMM: 70)	56	1?	W
4372	104.2	5.2	21.4	(XMM)	89		ea
4833	60.2	5.8	21.3	0	91		er
5139	156.3	4.9	20.9	70 S	48	1	k
6121	50.3	2.0	21.4	25	12		INC
6205	52.0	7.2	20.0	60 ksec 11/05	76	1 /XMM	
6218	39.4	5.6	21.0	30	66		SII
6254	51.3	4.3	21.2	0	47		50
6352	49.9	6.1	21.0	0	80		
6366	110.1	4.0	21.6	XMM 70; 24	68		Ç
6397	3.0	2.2	21.0	109	10	1	- 4
6496	62.8	5.7	21.0	0	66		
6539	4.0	32.5	21.7	(scheduled)	92		
6541	17.9	6.6	20.9	46 S	83		6
6544	2.9	2.5	21.6	17	29		
6553	33.1	3.5	21.7	XMM 21	73		
6656	84.3	3.0	21.3	XMM 470	26		
6752	10.5	4.2	20.3	30 S	28		
6809	170.6	4.8	20.8	XMM 27	43		
6838	38.2	3.9	21.2	55	39		
7099	3.4	7.4	20.5	50 S	88		

• 23 GCs for which one could easily detect 10³² erg/s qNS in <100 ksec w/ Chandra

• 12 have sufficient time, in which 5 (6?) qNSs detected.

• **5** observed with insufficient time.

6 not observed.

Neutron Star Mass and Radius Measurement with Broad-Band X-ray Spectroscopy: Fisher Analysis

X-ray Observatories -- Beyond 2010 Constellation X / (International X-ray Observatory)?

- Collecting area 50-100x present missions. High S/N X-ray spectroscopy will make possible precise (~5% accurate) simultaneous Mass and Radius measurements of neutron stars.
- Status: Under Review to determine priority under the Einstein program (Behind JDEM). Earliest launch: 2016.
- NASA Recently signed MOU with ESA & JAXA to explore an International X-ray Observatory.
- 15" sized PSF excludes all but ~3 of the known Globular Cluster sources for detailed study (OCen, M13, M28)
- A return to the field sources is required for progress. This will also require a highprecision (10 uarcsec) parallax mission, to obtain ~2% distances to field sources.

Constellation X Simultaneous Mass and Radius Measurement

Observationally important qLMXBs in Globular Clusters

qLMXB	kT_eff(infty) (ev)	NH	Fx (10 ⁻¹³ cgsflux)	Band (keV)	Ref.	
47 Tuc X7	105(5)	0.04(2)	5.3	0.5-10	Heinke et al (2006)	<: 5"
47 Tuc X5	100(20)	0.09(7)	4.3	0.5-10	Heinke et al (2003)	< 5"
M28	90(+30-10)	0.26(4)	3.4	0.5-8	Becker et al (2003)	
NGC 6304 X4	120(50)	[0.266]	2.3	0.5-10	Guillot et al (2008)	
oCen	67(2)	0.09(3)	1.7	0.1-5	Rutledge et al (2002), Gendre et al (2003)	
NGC 6304 X9	100(20)	[0.266]	1.5	0.5-10	Guillot et al (2008)	
NGC 6397	74(18)	0.1-0.26	1.06	0.5-2.5	Grindlay et al (2001	< 15"
M13	76(3)	[0.011]	1.03	0.1-5	Gendre et al (2003)	
M30 A-1	94(15)	0.03(1)	0.73	0.5-10	Lugger (2007)	
NGC 6304 X5	70(25)	[0.266]	0.59	0.5-10	Guillot et al (2008)	
M80 CX2	82(2)	0.09(2)	0.23	0.5-6	Heinke et al (2003)	<5"
M80 CX6	76(6)	0.22(7)	0.07	0.5-6	Heinke et al (2003)	<15"
NGC 2808 C2		0.86	0.02		Servillat et al (2008)	<15"

Constellation X/IXO Simultaneous Mass and Radius Measurement

 Neutron Star Masses and Radii can be measured from Hydrogen atmosphere neutron stars with ~few% accuracy with coming generation X-ray telescope.

• Field sources are the most promising targets, due to their brightness.

 Parallax mission will also be required to obtain accurate (1%) distances.

