

Beyond PCs: Accelerator Controls on Programmable Logic

Mark Plesko

PCaPAC workshop 2006-10-23

The Three Lifetime Occupations of Cosylab

- See previous workshops and conferences:
- A simple, versatile I/O controller
- Java programming
- Code generators
- Now, all in one article, all in one chip ③

Part 1: The "non-plus-ultra" Versatile Controller

- A GSI paper* suggests to make a controller with FPGA instead of CPU
 - Same hardware board addresses different I/O needs
 - implement hardware with software
- Motivation:
 - Reconfigurable hardware (FPGA) is much more flexible than general purpose CPUs
 - and even faster despite lower clock rates
 - But implementations and development effort is high
 - vendors offer generic processor cores
 - VHDL code (e.g., Altera NIOS or Xilinx PicoBlaze),
 - multiple powerful cores are fixed on the chip
 - e.g., Xilinx Virtex II includes PowerPC cores
- Mix CPU and logic functionality as needed

*M.Sayed, W.Panschow, Actual FPGAs – The Way Out Of Manifold Hardware Problems

Generic Controller Hardware Architecture Overview

The Bus (*Wishbone*)

- Open bus (spec maintained at OpenCores)
- Integration of IP cores on a SoC
- Efficient, flexible and easy to work with
- Many interconnection types (crossbar, data flow, point-to-point, shared bus, switched fabric, three-state)

Peripherals

- Digital I/O: FPGA pins
 - Need only dedicated transition boards with connectors
- Serial
 - Open UART core is available
 - Wishbone compatible
- GPIB:
 - Commercially available extensions (e.g., National Instruments, via PCI bus)
- System-to-system buses with FPGA:
 - ISA (PC104)
 - VME
 - PCI
 - PCIExpress

Network Communication

- For 10/100Mbit ethernet MAC, an open core exists
 - <mark>– by Igo</mark>r Mohor
 - Wishbone
 compatible
- For Gbit + ethernet, proprietary cores are available

Application Example 1: Nanosecond Resolution Timing

- Delaying of signals relative to a trigger
- Sub-nanosecond resolution
- Achievable in FPGA with PLLs (0.5ns, 50ps jitter)
- Processor for control and communication

Application Example 2: Motion Control

- Control of servo, stepper and other kinds of actuators
- Typically implemented with DSPs
 - Difficult to program and configure
- Co-design:
 - SW: motion programs, control, communication
 - HW: PID loops (up to several MHz)

9

Application Example 3: Network Traffic Manipulation

- Filtering and routing of packets
- Software:
 - Control
 - TCP stack
 - Signaling
- Hardware:
 Gigabit MAC
 Filtering
 - Exotic buffers

Application Example 4: Versatile I/O Controller

- High density, high-performance I/Os
 - Serial, GPIB, USB, firewire, ...
 - Same board in different configurations
 - 10-100 I/Os per FPGA
- Software:
 - Control and configuration
 - Communication (with I/Os and/or SCADA)
- Hardware:
 - UARTs, USB controllers, …
 - Multiple cores
 - Dedicated DSPs (e.g., fireware camera image processing)
 - Interlocks on digital inputs

Part II: Put Java on the FPGA !

- FPGAs and cores a nice, but I still want Java!
- 1. Use of standard Java constructs
 - Leverage existing development tools
 - Verifiable byte-code
- 2. Static checking
 - Code generation (e.g., drivers for custom modules)
 - Register address overlap check/autoassignment

Additional Requirements

- 4. Comply to RealTime Java (RTSJ)
 - Released first in January 2002,
 - second release, 1.0.1(b), on May 9th 2006.
 - specification lead: Peter Dibble of TimeSys Corporation
 - a provider of a real-time Linux and a reference real-time Java implementation
- 5. Support for debugging
 - Serial console
 - Java remote debugging
 - JTAG
- 6. Field upgrade of hardware and software

FPGA Java Processor Core Exists: JOP - Java Optimized Processor

- A processor that executes Java byte-codes
 - Complex byte-codes implemented in micro-code.
 - Deterministic behavior
- Occupies 1.0-1.8k LC (NIOS: 1.8k-2.9k); about 30% of Altera Cyclone EP1C6.
- Hello World application:
 - Boot time: < 10 ms (simulation at 100MHz)</p>
 - Footprint: 50kB (includes required runtime)
- BAD
 - A research project
 - Requires validation before using in production
 - Not wishbone compliant (requires a wrapper)
 - Not RTSJ (Realtime Specification for Java) compliant

Processor Core (Java Optimized Processor)

Hello World on FPGA

📰 wave - default													
⊞	00000B1:		0)))	()(000)			.) ()0)	_(()0)_)_)0		
/tb_jop/cmp_jop/cmp_scm/rd	1												
/tb_jop/cmp_jop/cmp_scm/wr	0												
œ ♦ /tb_jop/cmp_jop/cmp_scm/rd_data	1BA2001	00001	23D	(00490841		<u>(0018</u>	F407		2):	3 (1	2 (1	<u> 18)</u> (Ξ <u>Χ</u> Ε
	1												
⊕-	1	0)2	(1)(0		<u>)2)1)0</u>		(2)(1	2)1);	2)1)211	2)1)2);	12)1);	2)1)21
⊕-	1)(C)(B)	<u>A)9)8)7)2</u>	(1)(0)(F)(E)(D)	<u>C)B)A)9)8</u>	7)2)1)0)F	E)D)C)B)A)	9)8)7)2)1	2)1);	2)1)211	2)1)2);	12)1);	2)1)21
/tb_jop/cmp_jop/cmp_scm/state	rd2	idl))	()idl		_(_)(_)(idl							
bc load													
	004	000					(007),000	6)(005)(O	<mark>(</mark> 4)(003)(0 <u>02)(00</u>	1 (000
⊕-	007C1	0034E	8				<u>(007BD</u>	<u>(</u> 0	(0)(D XO.,.	0)(0	10)())(007
<u>-</u> <u>-</u> <u>/</u> <u>tb_jop/cmp_jop/cmp_mem/bc_wr_addr </u>	083	042						(080	<u>) (08.</u>	1)(082)(O	<mark>3)(084)(</mark>	085)(08	6)(087
/tb_jop/cmp_jop/cmp_mem/bc_wr_data	1100A21	3D12	0000	<u>)</u> 41084900		<u>,07</u> F4	1E00		(1)	1)(1	<u>0)(0</u>	(A)))(C
/tb_jop/cmp_jop/cmp_mem/bc_wr_ena	0												
⊕- /tb_jop/cmp_jop/cmp_mem/cache_bcstart	080	040					(080						
/tb_jop/cmp_jop/cmp_mem/cache_in_cache	0												
/tb_jop/cmp_jop/cmp_mem/cache_rdy	1												
external signals													
<u>-</u>	07C0	10B8	<u>(1</u> 2	23E		<u>(123D</u>		<u>(0</u>	<u>(0)</u> (D XO	<u>О ХО</u>	10 X) <u>X07</u> 0
<u>-</u>	2A1CB60			0		0		(<u>3 (</u>	1 <u>(</u> 2	<u>1 (8</u>	<u>ξ</u> F <u>χ</u>	<u> XOQ.</u>
/tb_jop/main_mem/ncs	0											_	
A /th ion/main mem/nos	n D200												
Now	1300 ps		250	0 ns	2600	0 ns	270	Dins		2800	n <mark>s</mark>		2900
Cursor 1	3534 ps									2809	534 ps	69	028046
Cursor 2	0000 ps												

սլ

Extending the Processor: Hyper-threading

- JOP core component instantiated more than once
- Advantages:
 - Improved processing power
 - Decreased latencies
 - Dedicated core for real-time tasks
- Issues:
 - Multiple masters for memory and I/O buses (arbiter needed)
 - Hardware implementation of Java's synchronization locks
 - Task scheduler needs to be aware of multiple cores

Hardware Architecture Overview

18

Part III: Generators for Everything (also for new buzzwords?)

- Development on a Java-like platform is more efficient than using other tools

 "Nearly everyody" knows Eclipse
- But need to define hardware in VHDL
- A hardware-software co-design approach would ameliorate the disadvantage

Proposed Development Workflow

Software Architecture Overview

Sample Java Code

```
class MySystemOnChip extends SystemOnChip {
public void defineHardware() {
  this.setDescription("Digital and serial I/O controller");
  wb = new WishboneBus("wb");
  this.addBus(wb);
   . . .
   jop0 = new JavaProcessor("jop0");
   jop0.has FloatingPoint(true);
  wb.addMaster(jop0);
   . . .
   flash0 = new CompactFlash("flash0");
   flash0.addPartition("fpqacfq0", 512*kB);
   flash0.addPartition("hda0");
   . . .
  eth0 = new OpenCoresEthernet("eth0");
  wb.addSlave(eth0);
```

```
}; // defineHardware method
```


Build Your Own Operating System with Java Code

```
public void init() {
   initDrivers();
   initMemoryManager();
   initFileSystem();
   initNetwork();
   initScheduler();
   initServices();
   run();
public void initNetwork() {
   // set the MAC address of the Ethernet adapter
   eth0.setMACVendor(0x00CAFE);
   eth0.setMACSerial((this.getSerial() & 0xFFFF) << 8);
   // initialize the IP protocol (version 4)
   ip = new InternetProtocolV4();
   // tell the Ethernet driver to dispatch events to IP protocol
   eth0.addProtocol(ip);
```

. . .

What Needs to be Developed To Make it Work

- –Java remote debugging
- –GPIB, UART, PID, memory access logic, field update
- –Ethernet, TCP/IP stack
- –JOP JVM refactoring, garbage collector
- Platform generator, documentation, testing, developer education

Conclusion

- HW/SW co-design has already been shown to be effective with FPGA cores
 - Development productivity greatly improves (WRT plain VHDL)
- With Eclipse and Java, productivity increase could be even more significant
- But the proposed architecture requires still a significant effort to realize
 - Nice research project