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The Three Lifetime Occupations of Cosylab

• See previous workshops and conferences:

• A simple, versatile I/O controller
• Java programming
• Code generators

• Now, all in one article, all in one chip ☺



3

Part 1: The “non-plus-ultra” Versatile 
Controller

• A GSI paper* suggests to make a controller with FPGA instead of 
CPU
– Same hardware board addresses different I/O needs
– implement hardware with software

• Motivation:
– Reconfigurable hardware (FPGA) is much more flexible than 

general purpose CPUs
• and even faster despite lower clock rates
• But implementations and development effort is high 

– vendors offer generic processor cores
• VHDL code (e.g., Altera NIOS or Xilinx PicoBlaze), 
• multiple powerful cores are fixed on the chip 

– e.g., Xilinx Virtex II includes PowerPC cores
• Mix CPU and logic functionality as needed
*M.Sayed, W.Panschow, Actual FPGAs – The Way Out Of Manifold Hardware Problems 
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Generic Controller Hardware Architecture
Overview
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The Bus
(Wishbone)

• Open bus (spec maintained at 
OpenCores)

• Integration of IP cores on a SoC
• Efficient, flexible and easy to work with
• Many interconnection types (crossbar, data 

flow, point-to-point, shared bus, switched fabric, three-

state)
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Peripherals

• Digital I/O: FPGA pins
– Need only dedicated transition boards with connectors

• Serial
– Open UART core is available
– Wishbone compatible

• GPIB:
– Commercially available extensions (e.g., National

Instruments, via PCI bus)
• System-to-system buses with FPGA:

– ISA (PC104)
– VME
– PCI
– PCIExpress
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Network Communication

• For 10/100Mbit 
ethernet MAC, an 
open core exists
– by Igor Mohor
– Wishbone 

compatible
• For Gbit+ ethernet, 

proprietary cores 
are available



8

Application Example 1:
Nanosecond Resolution Timing

• Delaying of signals relative to a trigger
• Sub-nanosecond resolution
• Achievable in FPGA with PLLs (0.5ns, 50ps jitter)

• Processor for control and communication
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Application Example 2:
Motion Control

• Control of servo, stepper and 
other kinds of actuators

• Typically implemented with 
DSPs
– Difficult to program and 

configure
• Co-design:

– SW: motion programs, 
control, communication

– HW: PID loops (up to 
several MHz) FPGA

PID 1

Processor

Ethernet 
MAC

Ethernet MII

PID 2

DAC

DAC
cfg
ref

ADC

ADC

Motor 1

Motor 2

Encoder 2

Encoder 1



10

Application Example 3:
Network Traffic Manipulation

• Filtering and routing of packets
• Software:

–Control
–TCP stack
–Signaling

• Hardware:
–Gigabit MAC
–Filtering
–Exotic buffers
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Application Example 4:
Versatile I/O Controller

• High density, high-performance I/Os
– Serial, GPIB, USB, firewire, …
– Same board in different 

configurations
– 10-100 I/Os per FPGA

• Software:
– Control and configuration
– Communication (with I/Os and/or 

SCADA)
• Hardware:

– UARTs, USB controllers, …
– Multiple cores
– Dedicated DSPs (e.g., fireware

camera image processing)
– Interlocks on digital inputs FPGA
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Part II: Put Java on the FPGA !

• FPGAs and cores a nice, but I still want Java!

1. Use of standard Java constructs
– Leverage existing development tools
– Verifiable byte-code

2. Static checking
– Code generation (e.g., drivers for custom 

modules)
– Register address overlap check/auto-

assignment
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Additional Requirements

4. Comply to RealTime Java (RTSJ)
• Released first in January 2002,
• second release, 1.0.1(b), on May 9th 2006. 
• specification lead: Peter Dibble of TimeSys

Corporation
• a provider of a real-time Linux and a reference 

real-time Java implementation 
5. Support for debugging

– Serial console
– Java remote debugging
– JTAG

6. Field upgrade of hardware and software
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FPGA Java Processor Core Exists:
JOP - Java Optimized Processor

• A processor that executes Java byte-codes
– Complex byte-codes implemented in micro-code.
– Deterministic behavior

• Occupies 1.0-1.8k LC (NIOS: 1.8k-2.9k);
about 30% of Altera Cyclone EP1C6.

• Hello World application:
– Boot time: < 10 ms (simulation at 100MHz)
– Footprint: 50kB (includes required runtime)

• BAD
– A research project

• Requires validation before using in production
– Not wishbone compliant (requires a wrapper)
– Not RTSJ (Realtime Specification for Java) compliant
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Processor Core
(Java Optimized Processor)
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Hello World on FPGA
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Extending the Processor:
Hyper-threading

• JOP core component instantiated more than once
• Advantages:

– Improved processing power
– Decreased latencies
– Dedicated core for real-time tasks

• Issues:
– Multiple masters for memory and I/O buses 

(arbiter needed)
– Hardware implementation of Java’s 

synchronization locks
– Task scheduler needs to be aware of multiple 

cores
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Hardware Architecture
Overview
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Part III: Generators for Everything (also for 
new buzzwords?)

• Development on a Java-like platform is 
more efficient than using other tools
– “Nearly everyody” knows Eclipse

• But need to define hardware in VHDL
• A hardware-software co-design

approach would ameliorate the 
disadvantage
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Proposed Development Workflow
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Software Architecture
Overview
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Sample Java Code
class MySystemOnChip extends SystemOnChip {
public void defineHardware() {

this.setDescription("Digital and serial I/O controller");
wb = new WishboneBus("wb");
this.addBus(wb);
...
jop0 = new JavaProcessor("jop0");
jop0.has FloatingPoint(true);
wb.addMaster(jop0);
...
flash0 = new CompactFlash("flash0");
flash0.addPartition("fpgacfg0", 512*kB);
flash0.addPartition(“hda0");
...
eth0 = new OpenCoresEthernet("eth0");
wb.addSlave(eth0);
...

}; // defineHardware method
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Build Your Own Operating System with Java 
Code

public void init() {
initDrivers();
initMemoryManager();
initFileSystem();
initNetwork();
initScheduler();
initServices();
run();

}
public void initNetwork() {

// set the MAC address of the Ethernet adapter
eth0.setMACVendor(0x00CAFE);
eth0.setMACSerial((this.getSerial() & 0xFFFF) << 8);

// initialize the IP protocol (version 4)
ip = new InternetProtocolV4();
// tell the Ethernet driver to dispatch events to IP protocol
eth0.addProtocol(ip);
...

}
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What Needs to be Developed To Make it Work

–Java remote debugging
–GPIB, UART, PID, memory access 
logic, field update

–Ethernet, TCP/IP stack
–JOP JVM refactoring, garbage 
collector

–Platform generator, 
documentation, testing, developer 
education
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Conclusion

• HW/SW co-design has already been shown to be 
effective with FPGA cores

– Development productivity greatly improves 
(WRT plain VHDL)

• With Eclipse and Java, productivity increase could 
be even more significant

• But the proposed architecture requires still a 
significant effort to realize

– Nice research project
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