
PCaPAC workshop 
2006-10-23

Beyond PCs: Accelerator 
Controls on Programmable 

Logic

Mark Plesko



2

The Three Lifetime Occupations of Cosylab

• See previous workshops and conferences:

• A simple, versatile I/O controller
• Java programming
• Code generators

• Now, all in one article, all in one chip ☺



3

Part 1: The “non-plus-ultra” Versatile 
Controller

• A GSI paper* suggests to make a controller with FPGA instead of 
CPU
– Same hardware board addresses different I/O needs
– implement hardware with software

• Motivation:
– Reconfigurable hardware (FPGA) is much more flexible than 

general purpose CPUs
• and even faster despite lower clock rates
• But implementations and development effort is high 

– vendors offer generic processor cores
• VHDL code (e.g., Altera NIOS or Xilinx PicoBlaze), 
• multiple powerful cores are fixed on the chip 

– e.g., Xilinx Virtex II includes PowerPC cores
• Mix CPU and logic functionality as needed
*M.Sayed, W.Panschow, Actual FPGAs – The Way Out Of Manifold Hardware Problems 



4

Generic Controller Hardware Architecture
Overview

FPGA

Microprocessor

Cache I/O

RAM 
(board)

Flash

FPGA cfg 
(copy 1)

FPGA cfg 
(copy 2)

ROM 
(copy 1)

ROM 
(copy 2)

Filesystem(s)

WishboneMemory access 
logic

RAM 
(FPGA)

Module B Module C

Module A

Module D



5

The Bus
(Wishbone)

• Open bus (spec maintained at 
OpenCores)

• Integration of IP cores on a SoC
• Efficient, flexible and easy to work with
• Many interconnection types (crossbar, data 

flow, point-to-point, shared bus, switched fabric, three-

state)



6

Peripherals

• Digital I/O: FPGA pins
– Need only dedicated transition boards with connectors

• Serial
– Open UART core is available
– Wishbone compatible

• GPIB:
– Commercially available extensions (e.g., National

Instruments, via PCI bus)
• System-to-system buses with FPGA:

– ISA (PC104)
– VME
– PCI
– PCIExpress



7

Network Communication

• For 10/100Mbit 
ethernet MAC, an 
open core exists
– by Igor Mohor
– Wishbone 

compatible
• For Gbit+ ethernet, 

proprietary cores 
are available



8

Application Example 1:
Nanosecond Resolution Timing

• Delaying of signals relative to a trigger
• Sub-nanosecond resolution
• Achievable in FPGA with PLLs (0.5ns, 50ps jitter)

• Processor for control and communication

time

trigger

output A

output B

tA

tB FPGA

Delay 
Generator

Processor

trigger

W
is

hb
on

e

output A

output B

Ethernet 
MAC

Ethernet MII

tA, tB



9

Application Example 2:
Motion Control

• Control of servo, stepper and 
other kinds of actuators

• Typically implemented with 
DSPs
– Difficult to program and 

configure
• Co-design:

– SW: motion programs, 
control, communication

– HW: PID loops (up to 
several MHz) FPGA

PID 1

Processor

Ethernet 
MAC

Ethernet MII

PID 2

DAC

DAC
cfg
ref

ADC

ADC

Motor 1

Motor 2

Encoder 2

Encoder 1



10

Application Example 3:
Network Traffic Manipulation

• Filtering and routing of packets
• Software:

–Control
–TCP stack
–Signaling

• Hardware:
–Gigabit MAC
–Filtering
–Exotic buffers

FPGA

Wishbone

Processor

Packet 
filter

Gigabit 
Ethernet 

MAC

Packet 
filter

Packet 
buffer

(3-port RAM)

Gigabit 
Ethernet 

MAC

Ethernet B MII

Ethernet A MII

data cfg ctl



11

Application Example 4:
Versatile I/O Controller

• High density, high-performance I/Os
– Serial, GPIB, USB, firewire, …
– Same board in different 

configurations
– 10-100 I/Os per FPGA

• Software:
– Control and configuration
– Communication (with I/Os and/or 

SCADA)
• Hardware:

– UARTs, USB controllers, …
– Multiple cores
– Dedicated DSPs (e.g., fireware

camera image processing)
– Interlocks on digital inputs FPGA

UART 1

Processor

Ethernet 
MAC

Ethernet MII

UART 2

GPIB

Firewire

USB

Analog
I/O

Digital
I/O

AD/DA 
converter

RS-232

RS-485

GPIB

Digital input

Digital output
Interlock



12

Part II: Put Java on the FPGA !

• FPGAs and cores a nice, but I still want Java!

1. Use of standard Java constructs
– Leverage existing development tools
– Verifiable byte-code

2. Static checking
– Code generation (e.g., drivers for custom 

modules)
– Register address overlap check/auto-

assignment



13

Additional Requirements

4. Comply to RealTime Java (RTSJ)
• Released first in January 2002,
• second release, 1.0.1(b), on May 9th 2006. 
• specification lead: Peter Dibble of TimeSys

Corporation
• a provider of a real-time Linux and a reference 

real-time Java implementation 
5. Support for debugging

– Serial console
– Java remote debugging
– JTAG

6. Field upgrade of hardware and software



14

FPGA Java Processor Core Exists:
JOP - Java Optimized Processor

• A processor that executes Java byte-codes
– Complex byte-codes implemented in micro-code.
– Deterministic behavior

• Occupies 1.0-1.8k LC (NIOS: 1.8k-2.9k);
about 30% of Altera Cyclone EP1C6.

• Hello World application:
– Boot time: < 10 ms (simulation at 100MHz)
– Footprint: 50kB (includes required runtime)

• BAD
– A research project

• Requires validation before using in production
– Not wishbone compliant (requires a wrapper)
– Not RTSJ (Realtime Specification for Java) compliant



15

Processor Core
(Java Optimized Processor)



16

Hello World on FPGA



17

Extending the Processor:
Hyper-threading

• JOP core component instantiated more than once
• Advantages:

– Improved processing power
– Decreased latencies
– Dedicated core for real-time tasks

• Issues:
– Multiple masters for memory and I/O buses 

(arbiter needed)
– Hardware implementation of Java’s 

synchronization locks
– Task scheduler needs to be aware of multiple 

cores



18

Hardware Architecture
Overview

FPGA

Java Optimized Processor

Java Optimized Processor

RAM 
(stack)

Cache

Microcode 
ROM

SimpCon
I/O

RAM 
(board)

Flash

FPGA cfg 
(copy 1)

FPGA cfg 
(copy 2)

ROM 
(copy 1)

ROM 
(copy 2)

Filesystem(s)

WishboneMemory access 
logic

RAM 
(FPGA)

Module B Module C

Module A

Module D



19

Part III: Generators for Everything (also for 
new buzzwords?)

• Development on a Java-like platform is 
more efficient than using other tools
– “Nearly everyody” knows Eclipse

• But need to define hardware in VHDL
• A hardware-software co-design

approach would ameliorate the 
disadvantage



20

Proposed Development Workflow

Generate JVM 
(Java)

Define platform

Generate 
hardware (VHDL)

Manual
Automated

Implement 
software

Automated tests 
on workstation

Design board (pin 
layout)

Synthesize and 
route hardware

Prepare and 
upload flash 

image



21

Software Architecture
Overview

D
riv

er
 A

D
riv

er
 B

D
riv

er
 C

in
te

rr
up

ts



22

Sample Java Code
class MySystemOnChip extends SystemOnChip {
public void defineHardware() {

this.setDescription("Digital and serial I/O controller");
wb = new WishboneBus("wb");
this.addBus(wb);
...
jop0 = new JavaProcessor("jop0");
jop0.has FloatingPoint(true);
wb.addMaster(jop0);
...
flash0 = new CompactFlash("flash0");
flash0.addPartition("fpgacfg0", 512*kB);
flash0.addPartition(“hda0");
...
eth0 = new OpenCoresEthernet("eth0");
wb.addSlave(eth0);
...

}; // defineHardware method



23

Build Your Own Operating System with Java 
Code

public void init() {
initDrivers();
initMemoryManager();
initFileSystem();
initNetwork();
initScheduler();
initServices();
run();

}
public void initNetwork() {

// set the MAC address of the Ethernet adapter
eth0.setMACVendor(0x00CAFE);
eth0.setMACSerial((this.getSerial() & 0xFFFF) << 8);

// initialize the IP protocol (version 4)
ip = new InternetProtocolV4();
// tell the Ethernet driver to dispatch events to IP protocol
eth0.addProtocol(ip);
...

}



24

What Needs to be Developed To Make it Work

–Java remote debugging
–GPIB, UART, PID, memory access 
logic, field update

–Ethernet, TCP/IP stack
–JOP JVM refactoring, garbage 
collector

–Platform generator, 
documentation, testing, developer 
education



25

Conclusion

• HW/SW co-design has already been shown to be 
effective with FPGA cores

– Development productivity greatly improves 
(WRT plain VHDL)

• With Eclipse and Java, productivity increase could 
be even more significant

• But the proposed architecture requires still a 
significant effort to realize

– Nice research project


	Beyond PCs: Accelerator Controls on Programmable Logic
	The Three Lifetime Occupations of Cosylab
	Part 1: The “non-plus-ultra” Versatile Controller
	Generic Controller Hardware Architecture�Overview
	The Bus�(Wishbone)
	Peripherals
	Network Communication
	Application Example 1:�Nanosecond Resolution Timing
	Application Example 2:�Motion Control
	Application Example 3:�Network Traffic Manipulation
	Application Example 4:�Versatile I/O Controller
	Part II: Put Java on the FPGA !
	Additional Requirements
	FPGA Java Processor Core Exists:�JOP - Java Optimized Processor
	Processor Core�(Java Optimized Processor)
	Hello World on FPGA
	Extending the Processor:�Hyper-threading
	Hardware Architecture�Overview
	Part III: Generators for Everything (also for new buzzwords?)
	Proposed Development Workflow
	Software Architecture�Overview
	Sample Java Code
	Build Your Own Operating System with Java Code
	What Needs to be Developed To Make it Work
	Conclusion

